
Programs and Algorithms
of Numerical Mathematics 18

Janov nad Nisou, June 19–24, 2016

Proceedings of Seminar

Edited by

J. Chleboun, P. Kůs, P. Přikryl,
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Preface
This book comprises papers that originated from the invited lectures, survey lectures,
short communications, and posters presented at the 18th seminar Programs and
Algorithms of Numerical Mathematics (PANM) held in Janov nad Nisou, Czech
Republic, June 19–24, 2016. All the papers have been peer-reviewed.

The seminar was organized by the Institute of Mathematics of the Czech Academy
of Sciences under the auspices of EU-MATHS-IN.cz, Czech Network for Mathemat-
ics in Industry. It continued the previous seminars on mathematical software and
numerical methods held (biennially, with only one exception) in Aľsovice, Bratř́ıkov,
Janov nad Nisou, Kořenov, Lázně Libverda, Dolńı Maxov, and Prague in the pe-
riod 1983–2014. The objective of this series of seminars is to provide a forum for
presenting and discussing advanced theoretical as well as practical topics in numerical
analysis, computer implementation of algorithms, new approaches to mathematical
modeling, and single- or multi-processor applications of computational methods.

More than 50 participants from the field took part in the seminar, most of them
from Czech universities and from institutes of the Czech Academy of Sciences, and
also from abroad. The participation of a significant number of young scientists,
PhD students, and also some undergraduate students is an established tradition of
the PANM seminar and it was observed this year, too. We do believe that those,
who took part in the PANM seminar for the first time, have found the milieu of the
seminar friendly and stimulating, and are going to join the PANM community.

The organizing committee consisted of Jan Chleboun, Pavel Kůs, Petr Přikryl,
Karel Segeth, Jakub Š́ıstek, and Tomáš Vejchodský. Ms Hana B́ılková kindly helped
in preparing manuscripts for print.

All papers have been reproduced directly from materials submitted by the au-
thors. In addition, an attempt has been made to unify the layout of the papers.
A photograph of the seminar participants in front of Achát (Agate) Hotel is in-
cluded, too.

The editors and organizers wish to thank all the participants for their valuable
contributions and, in particular, all the distinguished scientists who took a share in
reviewing the submitted manuscripts.

J. Chleboun, P. K̊us, P. Přikryl, K. Segeth, J. Š́ıstek, T. Vejchodský
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A. C. CLARKE’S SPACE ODYSSEY AND NEWTON’S LAW
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Abstract: In his famous tetralogy, Space Odyssey, A. C. Clarke called the
calculation of a motion of a mass point in the gravitational field of the massive
cuboid a classical problem of gravitational mechanics. This article presents
a proposal for a solution to this problem in terms of Newton’s theory of grav-
ity. First we discuss and generalize Newton’s law of gravitation. We then
compare the gravitational field created by the cuboid — monolith, with the
gravitational field of the homogeneous sphere. This is followed by the calcula-
tion of the shape of free fall trajectories and the solving of Newton’s equations
of motion, defining the motion of the mass point in the monolith’s gravitational
field for general initial conditions. The final section describes the procedures
for calculating the shape of the monolith’s equipotential surfaces. Due to
the complexity of the problems, all calculations are performed in the Maple
program. The results of the calculations are illustrated using both 2D and
3D graphs.

Keywords: law of gravity, gravitational force, potential, power, acceleration,
equations of motion, trajectory, Maple

MSC: 68W30, 70F15, 34A34, 65Z05, 65D30

1. Introduction

In A. C. Clarke’s Space Odyssey, namely [3] and [4], he dealt, among other things,
with the motion of a spacecraft in the gravitational field of a cuboid with dimensions
in the ratio of 1:4:9. He even calls the calculation of the trajectory a classical problem
of gravitational mechanics. Let us try to solve this problem using classical mechanics
and Newton’s equations of motion.

2. Newton’s law of gravitation

Let us take two mass pointes m1 and m2. The first point is at the origin of
the coordinate system, and the second point is on the coordinates [x, y, z]. Accord-

DOI: 10.21136/panm.2016.01
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ing to Newton’s law of gravitation, [5], the two points attract each other with

a force ~F :

~F =
κm1m2

x2 + y2 + y2
~e12, where

κ = Newton’s gravitational constant

~e12 =
the unit vector of the line
connecting m1 and m2

(1)

This law can be generalized with a complex equation for the calculation of the
gravitational pull of two homogeneous spheres of identical mass.

First, let us assume a gravitational pull of the homogeneous sphere with a massM1,
and radius R, with a mass point m2 located on the coordinates [X, 0, 0], X > R.
Interestingly, it is impossible to achieve the expected result |F | = κm2M1X

−2 by
integration of the |F | = κm2

∫
M1
X−2 dM1; it is necessary to calculate the potential

energy of the mass point m2 in the gravitational field of the sphere M1.

2.1. Potential energy

The potential energy of mass point m2 in the gravitational field generated by mass
point m1, is equal to the work required to move it from its current position to infinity.
Let us assume that mass point m2 is moved along a general, parametrically defined
spatial curve S = [x(p), y(p), z(p)], where p = parameter. If we move point m2

by d~S, then it is possible using equation (1) to determine the corresponding element

of work dW , according to the relationship dW = ~F · ~dS,

dW = κm1m2

∫ ∞
p

dR(p)
dp

R(p)2
dp ⇒ W =

κm1m2

R(p)
, where R(p)=

√
x(p)2+y(p)2+z(p)2. (2)

If we know the potential energy W , then it is possible to determine the gravita-
tional force using the relation ~F = −∇ (W ).

2.2. Gravitational force between a mass point and a homogeneous sphere

Now we can calculate the potential energy of mass point dM , on coordinates
[X, Y, Z] in the gravitational field of the homogeneous sphere with a radius R and
mass m, which is located at the origin of the coordinate system. The position of the
mass element of the sphere is entered in cylindrical coordinates as shown in Fig. 1,
the density of the sphere mass ρ = 3m

4π R3 .

W = κ dM

∫ R

−R

∫ √R2−x2

0

∫ 2π

0

ρ r√
(X − x)2 + r2

dφ

dr

dx⇒ F = −κm dM

X2
. (3)

From Eq. (3) we can easily prove that the gravitational interaction between the
homogeneous sphere and the mass point is determined by the same law as the gra-
vitational interaction between two mass pointes, see Eq. (1). The generalization of
two homogeneous spheres is based on the repetition of the above process. If mass
point dM can move freely in the sphere’s gravitational field, then the gravitational

force will grant its acceleration ~A = d~F
dM

.

8



2.3. Gravitational field inside the homogeneous sphere

Let us suppose that the point P is located inside the homogeneous sphere. It is
then possible to divide all the mass of the sphere that is at a greater distance from
the center of the sphere S than from the point P into concentric spherical shells
of elementary thickness dr. We can then pass a line through the point P which is
the axis of an elementary cone with apex dφ. Intersection points of this cone with
a shell can be considered as two mass points, and we can prove that their gravitational
forces on the point P cancel each other out. As a result, the only gravitational force
affecting the point P comes from the spherical mass that is closer to the center of
the sphere than the distance of the point P . The detailed computation can be found
in [1]. The gravitational acceleration As inside and outside the homogeneous sphere
with a radius Rs and mass M , equal to the mass of the monolith, is given by the
following equation:

As =
κ dM

R3
s

for d ≤ Rs, As =
κM

R2
s

for d ≥ Rs, where

Rs = 3T
3√π ,

T = length of the shortest

edge of the monolith

(4)

3. Gravitational field of the monolith from Space Odyssey

We will calculate the monolith’s gravitational acceleration ~A = [Ax, Ay, Az] in
the program Maple 13. To save space, we will only show the calculation for the
acceleration coordinate Ax, calculations for Ay and Az are very similar.

3.1. Monoliths gravitational force

If the acceleration vector is to be in units SI, or [A]SI = m s−2, then we must
multiply it by the density of the material; let us assume that ρ = 2000 kg m−3 and
Newton’s gravitational constant κ = 6.6710−11 m3 s−2 kg−1, that is 1.33410−7 s−2.
Since this value is very small and it is multiplied by all members of the acceleration
vector, it is not necessary to perform this multiplication, but all resulting acceleration
and speed values must be multiplied by this constant in comparison with the actual
acceleration values. The method also changes the speed or length of time steps.
Given that this is a relative comparison of individual accelerations, velocities and
displacements, these facts can be ignored.

> restart; with(plots): with(LinearAlgebra): R:=sqrt((X-x)^2+(Y-y)^2+(Z-z)^2):

> Lx:=9*T/2; Ly:=2*T; Lz:=T/2; Ix1:=Int((X-x)/R^3,x): Ix1:=simplify(Eval(Ix1,x=Lx)-Eval(Ix1,x=-Lx)):

> Ix1:=value(Ix1): Ix2:=Int(Ix1,y=-Ly..Ly); Ix2:=combine(value(Ix2),ln,symbolic);

Ix2 = ln

(
(%1 + %4)(%2 + %5)

(%1 + %5)(%2 + %4)

)
,where

%1=−2Y−4T

%2=−2Y+4T

%3=4X2+97T 2+4Y 2+16Y T+4Z2+4z2−8Zz

%4=
√

%3+36XT

%5=
√

%3−36XT

. (5)

The final calculation of the acceleration component Ax cannot be performed by
integration according to z, because this integral does not have an analytical solution.
We will therefore create a procedure for Ax that will perform a numerical integration
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for the coordinates [X, Y, Z] on which the mass point m is located, with an accuracy
of 10 significant figures. For the integration, it necessary to enter the length of the
shortest edge of the monolith, let us suppose it’s T = 10km, as exact values are not
listed in any one of the books [1-4].

> T:=1e5; Ax:=(a,b,c)->evalf(Int(subs(X=a,Y=b,Z=c,Ix2),z=-Lz..Lz,epsilon=10),10);

Now we can plot the course of the monolith’s gravitational force and compare
it with the gravitational field of the homogeneous sphere with the same mass and
material density. The gravitational force in the direction of axis X is plotted with
a red line, in the direction of axis Y it is plotted with a blue line, in the direction
of axis Z it is plotted with a green line, and the homogeneous sphere is plotted with
a black line. The graph in Fig. 2 shows that the course of the gravitational force
surrounding the monolith is significantly different from the spheres gravitational
field.

Figure 1: Gravitational interaction be-
tween sphere and dM .

0

20

40

60

80

20 40 60 80

y [km]

x [km]

x directiony direction

z direction

sphere

Figure 2: Gravitational force of the
monolith and sphere.

4. Movement in the monolith’s gravitational field

The movement of an object in the monolith’s gravitational field can be solved
using Newton’s equations of motion written in the standard form, [5]:

d2 ~P (t)

dt2
= ~A (t) , ~P (0) = [X0, Y0, Z0] ,

d ~P (t)

dt

∣∣∣∣∣
t=0

= [Vx0 , Vy0 , Vz0 ] . (6)

This is a system of non-linear second order differential equations, which have no
analytical solution in this case. Although the Maple program is equipped with an
extensive library of numerical solvers, they cannot be used because it is necessary to
calculate the gravitational acceleration in each step - see Eq. (5) and the following
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text. Because this vector must be calculated by numerical integration, we cannot use
the direction command dsolve in Maple. First, we will convert Eq. (6) to a system

of first order differential equations corresponding with the fact that d ~P (t)
dt

= ~V (t)

and d ~V (t)
dt

= ~A (t).
Now we can create a procedure Step, based on the Runge-Kutta method, which

will create a numerical solution to Eq. (6) with regard to the initial conditions. This
procedure is very simillar to procedure described in [2]. The procedure checks the
length of the spatial step. If the step is two short or long compared to the default
value DL, the time step changes the dt.

> FV:=(t,X,Y,Z,Vx,Vy,Vz)->[Vx,Vy,Vz]; FA:=(t,a,b,c,Vx,Vy,Vz)->-

[evalf(Int(subs(X=a,Y=b,Z=0,Ix2),z=Lz..Lz,epsilon=10),10),

evalf(Int(subs(X=a,Y=b,Z=0,Iy2),x=-Lx..Lx,epsilon=10),10),

evalf(Int(subs(X=a,Y=b,Z=c,Iz2),y=-Ly..Ly,epsilon=10),10)];

> Step:=proc(nu) local pv1,pv2,pv3,pv4,vv1,vv2,vv3,vv4,DPV,dl; global n,t,dt,Pos,PV,W,VV,Tau;

pv1:=dt*evalf(FV(t,Pos[],W[])): vv1:=dt*evalf(FA(t,Pos[],W[])):

pv2:=dt*evalf(FV(t+dt/2,(Pos+pv1/2)[],(W+vv1/2)[])):

vv2:=dt*evalf(FA(t+dt/2,(Pos+pv1/2)[],(W+vv1/2)[])):

pv3:=dt*evalf(FV(t+dt/2,(Pos+pv2/2)[],(W+vv2/2)[])):

vv3:=dt*evalf(FA(t+dt/2,(Pos+pv2/2)[],(W+vv2/2)[])):

pv4:=dt*evalf(FV(t+dt,(Pos+pv3)[],(W+vv3)[])):

vv4:=dt*evalf(FA(t+dt,(Pos+pv3)[],(W+vv3)[])): #............................ New Lines for StepPE

DPV:=1/6*(pv1+2*pv2+2*pv2+pv4): dl:=sqrt(add(w^2,w=DPV));

if dl>DL then dt:=dt/2; elif dl*8<DL then dt:=dt*2;

else n:=n+1; t:=t+dt; Pos:=Pos+DPV; PV:=[PV[],Pos];

W:=W+1/6*(vv1+2*vv2+2*vv3+vv4): VV:=[VV[],W];Tau:=[Tau[],t];

end if: end proc;

Let us suppose we let a small object fall from the resting state of Z = 0, from
a distance of 4 times the length of the edge Ly, from places where the position angle
is changed by 10◦. Each time step will be stored in variable TTau, velocity vectors
in variable TVV and position vectors in variable TPV.

> Nu:=9; TPV:=[]: TVV:=[]: TTau:=[]:

> for i from 0 to Nu do;

Pos:=[4*Ly*cos(pi*i/2/Nu),4*Ly*sin(pi*i/2/Nu),0]; W:=[0,0,0]; #................Initial Conditions

t:=0; dt:=0.125; DL:=1000; n:=0; PV:=[Pos]; VV:=[W]; Tau:=[0];

while not(abs(Pos[1])<Lx and abs(Pos[2])<Ly and Pos[3]<Lz) do; Step(); end do:

TPV:=[TPV[],PV]: TVV:=[TVV[],VV]; TTau:=[TTau[],Tau];

end do:

The free fall trajectory for the remaining planes can be calculated in a similar
manner X = 0 a Y = 0, see Fig. 3. The plotting commands are not listed here.
The free fall trajectories are marked red, the trajectory tangents in the initial point
of the fall are marked green, and the free fall trajectory in central gravitational field
is marked brown. The figure shows that motion in the monolith’s gravitational field
and in the sphere’s gravitational field varies considerably.

The equations of motion (6) can also be used for a general case of motion in
the monolith’s gravitational field. It only differs from the free fall in the choice of
initial conditions. For calculating the trajectories we can use procedure Step. Let us
suppose the motion in a plane Z = 0, with an initial position of [Lx, Ly, 0] and the
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velocity vector oriented in the direction of axis X; we will perform the calculations
for 8 velocities that are constantly increasing. Remaining Maple commands are not
listed.

> Pos:=[Lx,Lx,0]; W:=[-i*6000,0,0]; #................Initial Conditions .......

As Fig. 4 shows, the body either hits the monolith or flies around it on the
equivalent of a hyperbolic orbit. We can therefore assume that finding stable orbits
around the monolith can be a problem that is difficult to solve. This assumption
is supported by other calculations for different initial conditions. In the previous
calculation, we can simply replace the line marked as #Initial Conditions, with
the following line:

> Pos:=[Lx,Lx,3*Lz]; W:=[(-10600-i*200)/sqrt(2),0,(10600+i*200)/sqrt(2)]; #.....Initial Conditions

0
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Figure 3: Free fall in the
monolith’s gravitational field.
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Figure 4: Motion in the plane Z = 0.

As Fig. 5 shows, the body moves along quite unusual trajectories, which ulti-
mately lead it to fall on the monolith. If the initial velocity is slightly changed,
the corresponding trajectories are close to each other, which is confirmed by the
correctness of the calculations above.

5. Equipotential surfaces

The calculation of the shape of equipotential surfaces can be based on Eq. (2),
which implies that the gravitational force is always perpendicular to the equipotential
surface. We will therefore perform calculations of the shape of equipotential surfaces
for the plane of symmetry of the monolith; the intersection of the plane of symmetry
with the equipotential surface defines the curve that can be easily depicted thanks
to the validity of Eq. (2). First, we must determine the distance of the equipotential
surface from the center of the monolith. For this we can use the law of conservation
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of energy. From the center of the monolith - the beginning of the coordinate system,
we shoot a mass point in the direction of each axis at a known speed. The point at
which its motion stops will correspond with the equipotential surface with a poten-
tial of U = v2/2. The coordinates of this point can be found using the procedure
StepPE. Since it is necessary to determine the point at which the mass point stops,
it is necessary to change the lines of procedure Step, that follow # New Lines for

StepPE, because it is not possible to optimize the length of the spatial step when it
stops. The corresponding line of procedure StepPE is:

Pos:=Pos+1/6*(pv1+2*pv2+2*pv2+pv4): W:=W+1/6*(vv1+2*vv2+2*vv3+vv4):

At the stopping point, we can determine the direction of the gravitational field
using numerical integration of Eq. (2), and in the plane of symmetry we can de-
termine the direction that is perpendicular to this direction. There will be another
point of the equipotential surface in this direction. This is basically determining the
tangent trajectory of the direction field - solving the system of first order differential
equations. A numerical solution can be found using the procedure StepEQ:

> StepEQ:=proc(O) local pv1, pv2, pv3, pv4, DPV, dl; global n, t, dt, Pos, PV, Tau;

pv1:=dt*evalf(FA(t,Pos[])): pv2:=dt*evalf(FA(t+dt/2,(Pos+pv1/2)[])):

pv3:=dt*evalf(FA(t+dt/2,(Pos+pv2/2)[])): pv4:=dt*evalf(FA(t+dt,(Pos+pv3)[])):

DPV:=1/6*(pv1+2*pv2+2*pv2+pv4): dl:=sqrt(add(w^2,w=DPV));

if dl>DL then dt:=dt/2; elif dl*8<DL then dt:=dt*2;

else n:=n+1; t:=t+dt; DPV:=map(u->‘if‘(u=0,0,signum(u)*DPV[abs(u)]),O);

Pos:=Pos+DPV; PV:=[PV[],Pos]; Tau:=[Tau[],t];

end if: end proc;

The coordinates of points on equipotential surfaces can then be calculated using
the following commands:

> TPV:=[]: i:=’i’:

> for i from 25 to 50 do;

W:=[0,i*1000,0]; Pos:=[0,0,0]; VV:=[W]; t:=0; dt:=0.005; n:=0; PV:=[Pos]; Tau:=[0]; DL:=1500;

while W[2]>0 do; StepPE(); end do:

while abs(dt)>1e-5 do; dt:=-W[2]/FA(t,Pos[],W[])[2]; StepPE(); end do:

PV:=[Pos];dt:=0.025; while Pos[2]>0 do; StepEQ([-2,1,0]): end do:

TPV:=[TPV[],map(u->u[1..2],PV)];

end do:

The plotting commands are not listed in order to save space. The commands for
calculating equipotential surfaces corresponding with remaining planes of symmetry
are not listed for the same reason. The equipotential surfaces are plotted in Fig. 6.

6. Conclusion and discussion

The results of our calculations are seemingly contrary to what we know about
Earth’s gravitational field. Especially the free fall trajectories in Fig. 3 and the
unstable orbit trajectories in Fig. 5 are quite strange. These differences can be
explained quite simply. In the sphere’s gravitational field the free fall trajectory is
identical to the local vertical, which does not apply to the monolith.
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Figure 5: General orienta-
tion of the initial velocity.
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Figure 6: Equipotential levels.

Moreover, the gravitational force of the sphere’s gravitational field is always di-
rected towards the center of the object that is the source of gravity. The monolith’s
gravitational field does not meet this condition, which is why an object moving away
from the monolith, e.g. in the direction of axis Z, can oscillate in all directions
perpendicular to this axis, which is quite evident from Fig. 5.
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[1] Bartoň, S.: Fyzika I v řešených př́ıkladech. In Czech. Mendel University, Brno,
94–98, 2011.
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Sokolovská 83, Czech Republic

dolejsi@karlin.mff.cuni.cz, roskovec@gmail.com

Abstract: This paper is concerned with goal-oriented a posteriori error es-
timates for discontinous Galerkin discretizations of linear elliptic boundary
value problems. Our approach combines the Dual Weighted Residual method
(DWR) with local weighted least-squares reconstruction of the discrete solu-
tion. This technique is used not only for controlling the discretization error,
but also to track the influence of the algebraic errors. We illustrate the per-
formance of the proposed method by numerical experiments.
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1. Introduction

Usually a posteriori error estimation techniques measure the error in a norm

which is connected with the mathematical formulation of the problem being solved.

The concern in practical application may be quite different. The main purpose

of the computation may be to calculate a quantity of interest, expressed in the

mathematical language as a functional applied to the solution of the solved problem

(e.g. drag or lift in the airflow simulations). The dual weighted residual (DWR)

method first proposed by Rannacher et al., (for a survey, see e.g. [2]), suggests a way

how to connect the error of the target quantity with the solved problem. This is

enabled by solving the so-called dual (or adjoint) problem.

Our main goal is to employ the DWR method for designing an efficient adaptive

algorithm for solving stationary partial differential equations. We focus on the Pois-

son problem with Dirichlet boundary conditions in this paper, but most of the work

can be extended even to nonlinear problems. Even though the DWR method can

be combined with any discretization technique based on the variational formulation,

we focus mainly on the discontinuous Galerkin (DG) method, which is based on

discontinuous piece-wise polynomial approximation.
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Solving the additional dual problem may lead to an increase in the computational

effort. Moreover, the dual solution needs to be in a space V +
h ) Vh, where Vh is the

original discrete space. On the other hand, the ability of measuring directly the

error of the target quantity reduces the computational efforts compared to other

estimation techniques.

There are several possibilities for discretization of the dual problem. One can

solve the dual problem on a globally refined mesh with higher polynomial degree,

see e.g. [8]. This approach gives very precise results, but the computational effort

used to solve the dual problem exceeds the cost of the original problem dramatically.

Therefore, we present an algorithm based on higher-order reconstruction presented

originally in [5], which can be computed locally and therefore much more efficiently.

Further, the presented method naturally allows to integrate estimation of the

algebraic errors arising from inexact solution of both the primal and dual problems.

We present estimates enabling to keep the discretization and algebraic errors in

balance.

Finally, we compare the performance of the presented goal-oriented error estima-

tion method with a classical (not goal-oriented) a posteriori error estimate and we

examine the influence of the algebraic errors by a numerical experiment.

2. Problem description

Let Ω ∈ R2 be a bounded polygonal domain. We consider the Poisson equation

−∆u = f in Ω, (1a)

u = uD on ∂Ω (1b)

where u : Ω → R is an unknown scalar function defined on Ω.

We use the standard notation for the Lebesgue spaces Lp(Ω), Sobolev spaces

W k,p(Ω), Hk(Ω) = W k,2(Ω) and H1
0 (Ω) for the subspace of H1(Ω) containing func-

tions with vanishing traces of ∂Ω. Moreover, the space of polynomial functions up

to the degree k defined on a domain M ⊂ R2 is denoted by P k(M). We assume that

f ∈ L2(Ω) and uD is trace of some u∗ ∈ H1(Ω) ∩ L∞(Ω) on ∂Ω.

We say that function u ∈ H1(Ω) is the weak solution of problem (1) if it satisfies

u− u∗ ∈ H1
0 (Ω), (2)

a(u, ϕ) = l(ϕ) ∀ϕ ∈ H1
0 (Ω),

where a(u, ϕ) :=
∫

Ω
∇u · ∇ϕ dx, l(ϕ) :=

∫

Ω
fϕ dx, u, ϕ ∈ H1(Ω).

3. Discretization of the problem

Let Th be a partition covering Ω consisting of finite number of closed triangles K

with mutually disjoint interiors. The boundary of the elementK ∈ Th will be denoted

by ∂K and its diameter by hK = diamK.
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We assume that there exists h0 > 0 such that {Th}h∈(0,h0)
is a system of triangu-

lations is shape-regular and locally quasi-uniform. We do not require the conforming

properties known from finite element methods. Therefore, the triangulations Th could

contain so called hanging nodes. Over the triangulation Th we define the so-called bro-

ken Sobolev space over the triangulation Th as H
s(Ω, Th) = {v ∈ L2(Ω), v

∣

∣

K
∈Hs(K),

∀K ∈ Th}.
The DWR method can be combined with any discretization technique based on

the variational formulation of the solved problem such as finite element method,

finite volumes method or discontinuous Galerkin.

Here we focus only on the discontinuous Galerkin (DG) method. Since the DG

method is very convenient for hp-adaptation, we assign to each K ∈ Th its local

polynomial degree pK . Then we define vector p := {pK ; K ∈ Th} and as the finite

dimensional discrete space we use

S
p

h = {v ∈ L2(Ω); v
∣

∣

K
∈ P pK(K) ∀K ∈ Th}. (3)

We say that the function uh ∈ S
p

h is the approximate solution of (2) if

ah(uh, ϕh) = lh(ϕh) ∀ϕh ∈ S
p

h, (4)

where ah(·, ·) is a bilinear form resulting from the DG discretization of the problem (2)

and lh is a linear form representing the right-hand side of the equation enriched by

some terms resulting from the DG method.

The Dirichlet boundary condition (1b) is not enforced directly, but it is integrated

in the forms ah and lh by a penalty term. Detailed introduction of this method is

not necessary for this paper, so we only stress out the important properties of the

DG method when needed. Precise definitions of the forms and description of the

properties of the method can be found in the monograph [3].

The crucial requirement on this method needed in this article is to be consistent,

i.e. the exact solution u of problem (2) also satisfies

ah(u, ϕ) = lh(ϕ) ∀ϕ ∈ H2(Ω, Th). (5)

For the purpose of the higher-order reconstruction presented in Section 5 we

also define the space S
p+1
h := {v ∈ L2(Ω); v

∣

∣

K
∈ P pk+1(K) ∀K ∈ Th}. Obviously

S
p

h ⊂ S
p+1
h ⊂ H2(Ω, Th).

4. Dual weighted residual method

Our goal is to estimate the error J(u)− J(uh), where J : V ∪ Sp

h → R is a linear

functional representing the so-called quantity of interest. Typically, this functional

represents a regularized value of the solution (or its derivative) in a given point in Ω

or an integral over a part of Ω or its boundary ∂Ω.

The trick which enables to plug the functional J into the computation (similarly

as the Aubin-Nietche trick used to prove the optimal rate of convergence in L2−norm)
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is the introduction of the so-called dual (or adjoint) problem. In addition to the

original problem we introduce the dual problem:

find z ∈ V such that ah(ψ, z) = J(ψ) ∀ψ ∈ H2(Ω, Th). (6)

And also its discrete variant:

find zh ∈ S
p

h such that ah(ψh, zh) = J(ψh) ∀ψh ∈ S
p

h. (7)

Remark 1. Problem (6) may look a bit artificial since it contains the bilinear

form ah(·, ·) from the discretized problem (4). One could also consider directly the

dual problem to the weak formulation (2), i.e. a(ψ, z) = l(ψ), ∀ψ ∈ V. If the dis-

cretization method is dually consistent, i.e. the discrete dual problem is a consistent

discretization of the weak dual formulation, then these two definitions coincide. It

has been shown in [6] that the dual consistency is essential in order to maintain the

optimal convergence order of the method. Dual consistency is maintained only for

the symmetric variant of DG method known as SIPG – symmetric interior penalty

Galerkin, see [3] for details.

The following manipulation gives us a relation between the error of the quantity of

interest and the residual of the solved problem. Thanks to linearity of J , consistency

of the DG scheme and the Galerkin orthogonality ah(u− uh, ϕh) = ah(ϕh, z − zh) =

0 ∀ϕh ∈ S
p

h, we get

J(u)− J(uh) = J(u− uh) = ah(u− uh, z) = ah(u− uh, z − ϕh) (8)

= lh(z − ϕh)− ah(uh, z − ϕh) =: rh(uh)(z − ϕh) ∀ϕh ∈ S
p

h

and very similarly

J(u)− J(uh) = ah(u− uh, z − zh) = ah(u− ψh, z − zh) (9)

= J(u− ψh)− ah(u− ψh, zh) =: r∗h(zh)(u− ψh) ∀ψh ∈ S
p

h.

Hence the residuals rh(uh)(·) and r
∗
h(zh)(·) are equivalent in the following way

rh(uh)(z − ϕh) = r∗h(zh)(u− ψh) ∀ϕh, ψh ∈ S
p

h. (10)

Unfortunately, even the “exact” discrete solution satisfying (4) is not available

in practical computations due to algebraic errors. Instead, we compute their ap-

proximation uah and zah typically resulting from a finite number of iterations of an

iterative solver. In this case, Galerkin orthogonality property is violated and hence

identities (8) and (9) need to be revised. Similarly to [1], by adding the algebraic

error to (8), we get

J(u)− J(uah) = ah(u− uah, z − zah) + ah(u− uah, z
a
h)

= rh(u
a
h)(z − zah) + rh(u

a
h)(z

a
h), (11)
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and rewriting (9) gives

J(u)− J(uah) = ah(u− uah, z − zah) + ah(u− uah, z
a
h)

= ah(u, z − zah)− ah(u
a
h, z − zah) + ah(u− uah, z

a
h)

= lh(z)− ah(u, z
a
h)− (J(uah)− ah(u

a
h, z

a
h)) + lh(z

a
h)− ah(u

a
h, z

a
h)

= r∗h(z
a
h)(u)− r∗h(z

a
h)(u

a
h) + rh(u

a
h)(z

a
h). (12)

Here, the expressions rh(u
a
h)(z − zah) and r∗h(z

a
h)(u) represent the discretization

error, while rh(u
a
h)(z

a
h) and r∗h(z

a
h)(u

a
h) represent the algebraic errors of the pri-

mal and dual problem, respectively. Unlike r∗h(z
a
h)(u

a
h) and rh(u

a
h)(z

a
h), expressions

rh(u
a
h)(z − zah) and r∗h(z

a
h)(u) are not computable and have to be further approxi-

mated.

5. Approximation of the exact solutions u and z

Except for a few very special examples (see e.g. [2, Chapter 3]) exact solution of

the dual problem is not computable and has to be approximated. Since the residuals

of the (algebraically exact) approximate solutions uh and zh equal to zero for all

functions from S
p

h, functions approximating u and z must be from a richer space

than S
p

h, otherwise the error estimates (8) and (9) would degenerate.

The standard approach is to compute the dual problem on a finer mesh and/or

with higher polynomial degree. To avoid this costly procedure we exploit a higher

order reconstruction of the discrete solutions uh and zh, which can be obtained

locally and hence much faster. We use the weighted least-square reconstruction,

firstly presented in [5].

Let uh ∈ S
p

h be the approximate solution of (4). We compute the reconstruction

u+h ∈ S
p+1
h locally for each element K ∈ Th by a weighted least square approximation

from the elements sharing at least a vertex with K. We denote this patch of elements

DK = {K ′ ∈ Th; K
′ ∩K 6= ∅}.

We compute the function U
+
K ∈ P pK+1(DK) by

U
+
K = argmin

Uh∈P
pK+1(DK)

∑

K ′∈DK

ωK ′‖Uh − uh‖
2
H1(K ′). (13)

Then we assemble the higher-order reconstruction u+h as an element-wise composition

of U+
K

∣

∣

K
, i.e. u+h =

∑

K∈Th
U

+
K

∣

∣

K
.

When choosing the values of the weights ωK ′, we distinguish between elements

sharing a face and elements having only a common vertex. We set ωK ′ = 1 if K ′ = K

or if K,K ′ share a face and ωK ′ = ε if K,K ′ share only a vertex. The parameter

ε > 0 is chosen to be considerably smaller than one.

The computation of z+h is done alike, using function zh.
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6. Error estimates

Exploiting (11), (12) and the reconstructions defined in Section 5, we introduce

two kinds of discretization error estimators

ηS := rh(u
a
h)(z

+
h − zah), η∗S := r∗h(z

a
h)(u

+
h ). (14)

Furthermore, we define algebraic error estimators

ηA := rh(u
a
h)(z

a
h), η∗A := r∗h(z

a
h)(u

a
h), (15)

which measure the influence of the algebraic errors arising from the inexact solution

of the primal and the dual problem, respectively. Since we do not have in hands

the true error, but only its approximation, we proceed with iterations of the Krylov

solver until these algebraic estimators decrease significantly (10–1000 times) under

the level of the discretization error.

Using the definitions of the error estimators (14) and (15) and the relations (11)

and (12), we can write the error estimates

J(u)− J(uah) ≈ ηS + ηA (16)

and

J(u)− J(uah) ≈ η∗S − η∗A + ηA. (17)

The functional J has not the properties of a norm and can attain both positive

and negative values on different elements. Hence, we have to separate the estimate

of the error, where we avoid overestimation, and the local error indicators that have

to be positive at each element. Therefore, we define

ηS,K = |rh(u
a
h)((z

+
h − zah)

∣

∣

K
)|, η∗S,K = |r∗h(z

a
h)(u

+
h

∣

∣

K
)|, K ∈ Th. (18)

Either of those can be used as a local error indicator for mesh refinement. Although

the primal and dual residuals are theoretically equivalent, see (10), localizations (18)

can differ notably and hence may lead to differently refined meshes.

7. Numerical experiments

The problem we solve comes from [7]. We consider Poisson problem

−∆u = f in Ω = (0, 1)× (0, 1) (19)

u
∣

∣

∂Ω
= 0,

and we set the primal and dual right-hand sides

f(v) = −

∫

Tf

∂v

∂x1
dx, J(v) = −

∫

Tg

∂v

∂x1
dx, (20)
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where Tf and Tg are triangles with vertices Tf = {(0, 0), (0.5, 0), (0, 0.5)} and Tg =

{(1, 1), (0.5, 1), (1, 0.5)}, see Figure 1.

Both f and J are in H−1(Ω) and the solutions have singularities along the lines

connecting points [0, 0.5], [0.5, 0] and [0.5, 1], [1, 0.5] for the primal and dual prob-

lems, respectively. We discretized the problem by SIPG DG method with piece-wise

quadratic polynomials. We compare the numerical results obtained by goal-oriented

estimates with u+h , z
+
h computed with the least-squares reconstruction (DWR) and

with globally increased polynomial degree (DWR P). The third approximation was

computed with a classical (not goal-oriented) error estimation technique (RES). This

method, first proposed in [4], estimates dual norm of the residual of the discrete so-

lution.

Meshes after 25 steps of mesh adaptation are showed in Figure 1. In each adap-

tation step we refined 10% of elements with the largest local error indicators. In

Figure 2, we compare the decrease of the error J(u)− J(uah) for all three algorithms

on adaptively refined meshes. The adaptive RES technique does not take into ac-

count the singularity of the dual problem. For this reason it does not refine the mesh

in the upper-right corner and it cannot decrease the error of the target quantity

bellow the level 10−6. The goal-oriented algorithm reduces the error more steadily.

The computation with the least-squares reconstruction behaves comparably to the

more expensive algorithm DWR P. Our goal-oriented algorithm almost achieves the

optimal theoretical rate of convergence O((#Th)
−2) proved in [7].

In the second experiment, Figure 3, we compare the decrease of the true error

of the quantity of interest J(u) − J(uah) with estimates ηS, η
∗
S of the discretization

error and estimates ηA, η
∗
A of the algebraic errors given by (14)–(15). These results

were obtained by the SIPG method with quadratic polynomials on fixed uniform

mesh with 256 elements. At each step (outer iterations, which are marked on the

horizontal axis in Figure 3) we simultaneously performed 8 iterations of the algebraic

solver (GMRES with ILU preconditioning) for primal and 50 iterations for the dual

problem, respectively. In other words, at the outer step i, the situation after i×8 and

i×50 steps of the algebraic solver for the primal and the dual problem, respectively,

is plotted.

Figure 3 nicely illustrates the relations (12) and (17). Since we perform more

iterations of the algebraic solver in each (outer) step, thus both |zh − zah| and the

Tf

Tg

Figure 1: The initial mesh (left) and final meshes produced by the DWR method

(center) and DWR P method (right), respectively.
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Figure 2: Error convergence of the RES, DWR and DWR P methods compared to

the theoretical rate.

algebraic error of the dual problem (≈ η∗A) is negligible already after a few steps. On

the other hand, the algebraic error of the primal problem (≈ ηA) decreases slower.

Therefore, in the first 10 steps the error of the target quantity J(u)−J(uah) is mainly

caused by the algebraic errors in the solution of the primal problem, hence its decrease

corresponds to the decrease of ηA. Only when the estimate ηA decreases under the

level of the discretization error, J(u)−J(uah) stops at the level of J(u)−J(uh) ≈ η∗S.

For example in the step 6 (i.e, after 48 and 300 iterations of the algebraic solver

for the primal and dual problem, respectively) both the error J(u)− J(uah) and the

estimate ηS are still strongly influenced by the algebraic errors of uah. On the the

contrary, the dual estimate η∗S is already at the level of the exact discretization error

J(u)− J(uh). In other words, the algebraical inexactness in the discrete solution uah
influences the primal estimate ηS more seriously than the dual estimate η∗S.

Similar (but reversed) behavior was observed in the opposite case, when uah ≈ uh
but zah is far from zh. This indicates that even quite inexact approximation zah of zh
could be sufficient for the primal estimate ηS. On the other hand, if we knew that for

some reason the dual algebraic problem was easier to solve, we should use the dual

estimate η∗S which can give better results for rough approximations of uh. Finally,

we note that this is possible only thanks to the equivalence (10) between the primal

and the dual residual, which also implies that J(uh) = ah(uh, zh) = lh(zh), hence we

are able to obtain an approximation of J(u) even without computing uh at all.
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Abstract: Analysis of a non-classically damped engineering structure, which

is subjected to an external excitation, leads to the solution of a system of

second order ordinary differential equations. Although there exists a large

variety of powerful numerical methods to accomplish this task, in some cases

it is convenient to formulate the explicit inversion of the respective quadratic

fundamental system. The presented contribution uses and extends concepts

in matrix polynomial theory and proposes an implementation of the inversion

problem.
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1. Introduction

Solution of matrix differential equations is closely associated to the theory of ma-
trix polynomials. The very important class of the second order matrix differential
equations has a wide variety of applications, among others in vibration analysis in
civil or mechanical engineering or in the analysis of oscillation circuits in electrical
engineering. The motivation behind this contribution originates from the vibration
analysis of non-classically damped engineering structures, which are subjected to
a random external excitation. In case of non-stationary excitation, the numerical
integration of the differential system gives only a very limited information on the
stochastic character of the response. In such cases it is more convenient to formu-
late the exact or approximate analytical solution, if possible, and to use it for an
assessment of the stochastic properties of the system response. Such a procedure is
provided by, e.g., the spectral decomposition method [2].

The behaviour of the structure is described by a relation:

AÜ(ω, t) +BU̇(ω, t) +CU(ω, t) = f(ω, t) (1)

where the coefficient matrices A,B,C ∈ Rn×n are considered to be constant, real
and symmetric, U(ω, t) is a deterministic function describing transformation of the

DOI: 10.21136/panm.2016.03
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random excitation and f describes properties of the random excitation. The Laplace
transform changes the differential system into an algebraic one

(Ap2 +Bp+C)U⋆(ω, p) = Q(p)U⋆(ω, p) = f
⋆(ω, p) , (2)

whose solution is given by

U
⋆(ω, p) = Q(p)−1

f
⋆(ω, p) . (3)

The inverse of the matrix polynomial Q(p)−1 can be written in a form of a sum [1]

Q(p)−1 =

n
∑

j=1

(

Sj

1

p− pj
+ Sj

1

p− pj

)

(4)

where pj are the roots of detQ(p) (generalized eigenvalues of Q) and matrices Sj

are rank 1 matrices related to the generalized eigenvectors of Q. Solution of (1) is
finally given as

U(ω, t) =

2n
∑

j=1

Sj

∫ t

0

e
pj(t−τ)

f(ω, τ)dτ. (5)

In the following section, the basics of matrix polynomial theory will be introduced
according to the monograph by Gohberg et al. [1]. Sections 3 and 4 will be devoted
to the lemma which leads to an advantageous formulation of matrices Sj in (4) and
to a computational algorithm.

2. Basics of the matrix polynomials theory

Definition. Let l > 0 and Aj ∈ Rn×n, j = 0, . . . , l, Al 6= 0 be square matrices.

The matrix polynomial L(λ) of degree l is defined as

L(λ) =

l
∑

j=0

Ajλ
j . (6)

An eigenvalue λ of the matrix polynomial L(λ) is the solution of

L(λ) = 0 or detL(λ) = 0 , (7)

whilst the corresponding (right) eigenvector x and left eigenvector y is any non-zero

solution of

L(λ)x =

l
∑

j=0

Ajλ
j
x = 0 resp. y

T
L(λ) =

l
∑

j=0

y
T
Ajλ

j = 0 . (8)

Two matrix polynomials M(λ) and N(λ) are equivalent, M(λ) ≃ N(λ), if there exist

two matrix polynomials E(λ) and F(λ) with constant determinants such that

M(λ) = E(λ)N(λ)F(λ). (9)
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A linearization of a matrix polynomial L(λ) of dimension n and degree l is a linear

matrix polynomial Eλ−H of dimension nl where

L(λ) ≃ (Eλ−H) . (10)

The linearization matrix A ∈ Rnl×nl is such a matrix that L(λ) ≃ Iλ−A.

The concept of linearization is traditionally used for computation of eigenvalues
of a matrix polynomial using standard methods for the linear eigenvalue problem [4].
The linearization is not uniquely defined. However, all linearizations share the same
set of eigenvalues. The commonly used linearization assumes E = I and uses a block-
-matrix H consisting of terms −A

−1
l Ai, i = 0, . . . , l − 1 in the last row and identity

matrices in positions of the first superdiagonal. However, there exist also other
forms, suitable for particular purposes. One of the most interesting examples is the
symmetric linearization, which assures symmetry of the matrices E and H due to
symmetry in individual matrices Ai, see [3].

Definition. A standard pair of a matrix polynomial is a pair of matrices (X,T),

X ∈ Cn×nl,T ∈ Cnl×nl such that the matrix Z of dimension (nl × nl), where

Z =











X

XT

...

AlXT
l−1











is regular and
l
∑

0

AjXT
j = 0 .

The standard pairs are not unique. However, if T is diagonal (or in a Jordan
form in the case where some eigenvalues have higher multiplicity), the matrix X will
be uniquely defined. Its columns will be formed by eigenvectors corresponding to
the respective eigenvalues. Such a standard pair (X,T) is called a Jordan pair.

Definition A Jordan triple is called a triple of matrices (X,T,Y), where (X,T)

is a Jordan pair and Y ∈ Cnl×n satisfies:

XT
i
Y = 0 i = 0, . . . , l − 1 ,

AlXT
l−1

Y = I .
(11)

3. Inverse of matrix polynomial

Lemma 1. Let all eigenvalues of the matrix polynomial L(λ) be non-zero and the

leading coefficient matrix be regular. Then the rows of the matrix Y of the Jordan

triple (X,T,Y) form the left eigenvectors of L(λ), i.e.

k
∑

j=0

T
j
YAj = 0 . (12)
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Proof: Let l = 2. The proof assumes the linearization

[

−

(

I 0

0 A2

)

λ+

(

0 I

−A0 −A1

)]

.

Let Z =

(

X

XT

)

. Because (X,T) is a Jordan pair it holds that

(

0 I

−A0 −A1

)

Z =

(

I 0

0 A2

)

ZT. (13)

Right multiplication by Z
−1 and further transformation leads to

Z
−1

(

I 0

0 A
−1
2

)(

0 I

−A0 −A1

)

= TZ
−1. (14)

Let T =

(

T1 0

0 T2

)

and Z
−1 =

(

Z1 Z2

Z3 Z4

)

, where Zi i = 1, . . . , 4 are square

blocks of dimension n. Expansion of the last expression (14) gives

(

−Z2A
−1
2 A0 Z1 − Z2A

−1
2 A1

−Z4A
−1
2 A0 Z3 − Z4A

−1
2 A1

)

=

(

T1Z1 T1Z2

T2Z3 T2Z4

)

. (15)

Now, comparing first columns

Z1 = −T
−1
1 Z2A

−1
2 A0 ,

Z3 = −T
−1
2 Z4A

−1
2 A0 ,

and substituting into the second columns (15) then writing in the matrix form leads
to

−T
−1

(

Z2A
−1
2

Z4A
−1
2

)

A0 −

(

Z2A
−1
2

Z4A
−1
2

)

A1 = T

(

Z2

Z4

)

.

Denoting Y = Z
−1

(

0

A
−1
2

)

=

(

Z2A
−1
2

Z4A
−1
2

)

, and multiplying by the matrix T from

the left hand side leads to

−YA0 −TYA1 = T
2
YA2.

The proof for general l can be performed in a similar manner: the key step is the
expansion of the Z

−1 =
(

Z1 . . .Zl

)

, where Zi i = 1, . . . , l are the column blocks.
In the next section, it will be supposed that Al is regular. The inverse matrix

polynomial can be written using its Jordan triple in the following form [1]:

(L(λ))−1 = X(λI−T)−1
Y (16)
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If T is diagonal, e.g., if all eigenvalues λi are distinct, it holds

(λI−T)−1 = diag

(

1

λ− λi

)

and equation (16) can be rewritten as

(L(λ))−1 =

ln
∑

j=1

1

λ− λj

xjy
T

j (17)

where xj are columns of X and y
T

j are rows of Y.
By respecting the character of the underlying physical problem, it is possible to

assume that all matrices Ai are symmetrical and that T is diagonal and regular with
distinct elements. The matrix Y is defined by the conditions (11). It remains to
show that there exists a matrix D such that YT

D = X.

0
T =

(

∑

AiY
T
DT

i
)T

(18)

=
∑

T
i
DYAi (19)

=
∑

D
Ti
T

i
DYAi =

∑

T
i
YAi (20)

where the symbol DTi
means i-multiple transpositions.

The last equation (20) implies symmetry of D, i.e. DT = TD and thus for
elements dij of D it holds: di,j = 0 ⇔ ti

tj
6= 1.

This means that if the diagonal elements of T are distinct, the matrix D is
diagonal and regular. The same result can be reached using a different reasoning:
due to Lemma 1 the third term of the Jordan triple is formed by the left eigenvectors.
For symmetric matrices Aj the right and left generalized eigenvectors coincide. This
means that the corresponding columns of YT and X differ by multiplicative constants
and so the matrix D has to be diagonal.

Under the assumptions introduced above, it is possible to find such eigenvectors X
that (X,T,XT) forms the Jordan triple. The conditions (11) attain the form:

XT
i
XT = 0 i = 0, . . . , l − 1 ,

AlXT
l−1

X
T = I .

(21)

The only unknown step in the procedure is selection of the proper scaling con-
stants of the eigenvectors X.

4. Formulation of the algorithm

The inverse of a matrix polynomial L(λ) can be formulated using the following
procedure

1. Solve the linear eigenvalue problem with some linearization matrix to obtain
a pair of matrices (˜X,T).
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2. Find the diagonal matrix D such that X = ˜XD and (X,T) satisfy (21). Its
existence was proven before.
According to (11) we now have

(

˜XD˜X
T

A2
˜XTD˜X

T

)

=

(

0

I

)

. (22)

Substituting ∆ = ˜XD into (22) the equation transforms into
(

˜X

A2
˜XT

)

∆T =

(

0

I

)

. (23)

Because (∆)ij = xijdj and xij are known, it is sufficient to solve the system (23)
for only one column of ∆ and the corresponding column of the right hand side.
Selection of such a column depends on the distribution of non-zero elements of
rows of the matrix ˜X.

3. The diagonal elements of D are computed as ratios

dii = ∆ji/xij , (24)

supposing that the j-th column has been used. Finally, set X = Y
T = ˜X

√
D.

4. The inverse of the matrix polynomial can be computed using relation (17)
where both xj and y

T

j are columns of X.
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Abstract: To solve the contact problems by using a semismooth Newton
method, we shall linearize stiffness and mass matrices as well as contact con-
ditions. The latter are prescribed by means of mortar formulation. In this
paper we describe implementation details.
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1. Introduction

After a finite element discretization, a mathematical model of the contact prob-

lem is a problem of quadratic programming with an equality and an inequality con-

straints in a special form, see for example [1]. If a system matrix isn’t positive

definite, we cannot use this approach. Positive definiteness of the system matrix

may be impaired in a case of material nonlinearity and computing in increments.

One of the possible solutions is the solution of a nonlinear equation system in-

stead of a minimization problem. The inequality constraints can be also written

as the equality constraints unfortunately compensated by the price of a nonsmooth

function appearance in the formulation. This reformulated problem can be solved

by the semismooth Newton method. Therefore, it is necessary to linearize the stiff-

ness matrix and the contact matrices which is in detail described in [3]. The mortar

contact topic is described in [4]. Our goal was to implement solution for the lin-

earized contact problem using the semismooth Newton method in the framework

of the MatSol library.
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Figure 1: Reference and actual configuration.

2. Formulation of a contact problem

Consider a 2D contact problem with definite deformations of two elastic bod-

ies (see Figure 1). Both bodies are represented as open sets Ω(sl) ⊂ R2 (a slave),

Ω(m) ⊂ R2 (a master). Their boundary ∂Ω(sl), ∂Ω(m) can be divided into the following

parts:

• the part with prescribed Neumann condition Γ
(i)
N ,

• the part with prescribed Dirichlet condition Γ
(i)
D ,

• and the part with contact boundary Γ
(i)
C ,

where i ∈ {sl, m}. We will assume that all boundary parts Γ
(i)
N , Γ

(i)
D and Γ

(i)
C are

mutually disjoint. We also distinguish two types of configuration in the contact

problem, an actual configuration (ω(i), γ
(i)
D , γ

(i)
N , γ

(i)
C , x(i)) and a reference configu-

ration (Ω(i), Γ
(i)
D , Γ

(i)
N , Γ

(i)
C , X(i)). Actual configuration of both bodies is described

by a displacement vector

u(i) = X(i) − x(i). (1)

On contact boundary a gap function is introduced to define gap between the slave

and the master body

g(X(sl)) = −n
(

x(sl)(X(sl))
)

·
[

x(sl)(X(sl))− x̂(m)(X̂(m))
]

, (2)

where n = n(sl) is a normal vector of the slave surface γ
(sl)
C in the actual configuration,

x̂(m) is a projection of the slave node x(sl) to the master surface γ
(m)
C in the direction
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of the normal vector and X is a corresponding point to x in the reference configura-

tion. Using the gap function we are able to find a corresponding node on the master

surface in the reference configuration to the slave node in the same configuration.

After a discretization process (for details see [5]), we can reformulate the contact

problem with the KKT conditions to an algebraic form

Kd + D⊤z−M⊤z− f = 0

g̃j ≥ 0 (nonnegative gap between bodies)

(zn)j ≥ 0

(zn)j g̃j = 0 (the complementarity condition)

(zt)j = 0 (no friction),

(3)

where K is a stiffness matrix, D and M are mortar contact matrices, d is a displace-

ment vector, z is a vector of multiplicators and f is a vector of volume and boundary

forces.

If we want to calculate mortar matrices, we have to divide the contact elements

to smaller parts called the contact segments (see Figure 2). It is necessary for the nu-

merical integration of the master shape functions because one segment is connected

with exactly one master and one slave element and the shape function formulas have

nonchanging prescriptions. A segmentation process is based on the node projection

from the slave (the master) surface to the other surface along the normal of the slave

surface.

Figure 2: Surface segmentation.

3. Nonsmooth formulation for discrete problem

The semismooth Newton method solves

F
◦(x) = 0 , (4)

where F◦ is a nonsmooth function, so it is necessary to transform all inequalities in (3)

to equality. Moreover, the semismooth Newton method uses iterative prescription

which is similar to continuous one

F
◦(xk)∆x

k = −F(xk), x
k+1 = x

k +∆x
k, (5)
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but there is the nonsmooth function F
◦ and we reach only a superlinear convergence.

For details see [2].

With the use of the active set strategy idea, it is possible to reformulate inequal-

ities in (3) to equalities but there is no apriori information which nodes of the slave

contact surface belong to an active set A or to an inactive set I. It is known only if

the solution is available. Luckily, the inequalities can be formulated as finding a zero

level of the nonsmooth function. Therefore we introduce a so-called complementarity

function Cj

Cj(z j , d) = (zn)j −max (0, (zn)j − cng̃j) ∀j ∈ S, (6)

where S denotes a set of all contact nodes of the slave surface. The zero level

of the complementarity function Cj is equal with the KKT conditions

g̃j ≥ 0

(zn)j ≥ 0 ∀j ∈ S

(zn)j g̃j = 0











⇔ Cj(zj, d) = 0 ∀j ∈ S . (7)

The function Cj is continuous but nonsmooth, we cannot determine a derivative

at (zn)j − cng̃j = 0. With use of the complementarity function Cj, we are able to

reformulate (3) to

r = Kd + D⊤z−M⊤z− f = 0 ,

Cj (zj, d) = 0 ∀j ∈ S ,

(zt)j = 0 ∀j ∈ S .

(8)

If we want to be able to linearize the function Cj, we have to define a generalized

derivative of the max(a, x) function

f(x) = max(a, x) −→ ∆f(x) =

{

0, for x ≤ a

1, for x > a
. (9)

Sets which are described bellow are used to determine which nodes of the slave con-

tact surface belong to the active Ak or to the inactive Ik set in each step of the al-

gorithm

Ik =
{

j ∈ S|
(

nk
j · z

k
j − cng̃

k
j

)

≤ 0
}

, (10)

Ak =
{

j ∈ S|
(

nk
j · z

k
j − cng̃

k
j

)

> 0
}

. (11)

Using these sets also allows us to use a block matrix notation which you can see

below.
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Complete linearization of the problem yields the system of linear equations























KNN KNM KNI KNA 0 0

KMN K̃
MM

K̃
MI

K̃
MA

−M⊤
I −M⊤

A

KIN K̃
IM

K̃
II

K̃
IA

DI 0

KAN K̃
AM

K̃
AI

K̃
AA

0 DA

0 0 0 0 I I 0

0 M̃
A

S̃
AI

S̃
AA

0 0

0 0 F̃
AI

F̃
AA

0 TA







































∆dN

∆dM

∆d I

∆dA

z I

zA

















= −





















rN
rM
rI
rA
0

g̃
A

0





















, (12)

where elements with a tilde above are affected by a linearization process, N denotes

all nodes which aren’t on the contact surfaces, M denotes all nodes of the master

contact surface, A denotes nodes of the slave contact surface which are actually in

contact (active set) and I denotes all nodes of the slave contact surface which aren’t

actually in contact (inactive set).

We can also eliminate all multiplicators z from the system above by using

z I = 0 , (13)

zA = D−1
A

(

−KAN ∆dN −KAM ∆dM −KAI ∆d I −KAA ∆dA − rA
)

. (14)

4. Algorithm

The algorithm for solving the contact problem, which was formulated above, can

be written in this way

1. In the step k = 0, set initial value of the vector

[

∆d0

z0

]

.

2. Determine A0 and I0, where A0 ∪ I0 = S and A0 ∩ I0 = ∅.

3. Find primal-dual couple
(

∆dk, zk+1
)

by solving the system of linear equa-

tions (12) (or the system with eliminated multiplicators).

4. Update dk+1 = dk +∆dk.

5. Determine Ak+1 and Ik+1

Ik+1 =
{

j ∈ S|
(

nk+1
j · zk+1

j − cng̃
k+1
j

)

≤ 0
}

,

Ak+1 =
{

j ∈ S|
(

nk+1
j · zk+1

j − cng̃
k+1
j

)

> 0
}

.

6. If Ak+1 = Ak, Ik+1 = Ik and ‖rtot‖ ≤ εr , then stop, else increment k = k + 1

and continue from the 3rd step.

εr represents accuracy of our calculation and a vector rtot contains vector of a residual

force r and the residual contact constraints.
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5. Numerical experiment

The semismooth Newton method was tested on a static problem, in which the

slave body was divided into 10× 10 elements and the master body into 20× 10 ele-

ments (see Figure 3). On the upper halves of sides of the slave boundary a Dirich-

let condition was defined. The Dirichlet condition was also defined on the bottom

of the master boundary. On the other parts of the boundaries, except the contact

boundary, a Neumann condition was prescribed. We choose the calculation accuracy

equal to εr = 10−9.

Figure 3: Static problem.

We compared both modifications of the semismooth Newton method (the first

modification, denoted SSNM – Alg. 1, uses the system which contains multipli-

cators z and the second modification, denoted SSNM – Alg. 2, uses the system

without multiplicators z) with a fixed point problem. In each step of the algorithms

the ‖rtot‖ value was used to stop the algorithm. The individual ‖rtot‖ values are

shown in Table 1 listed below .

Individual matrices assembling was implemented in a C++ language with the use

of the mex interface for ability to employ this code in MATLAB. Both of the men-

tioned algorithms (semismooth Newton method modification and fixed point algo-

rithm) were implemented in MATLAB and were added to existing MatSol library

which was developed at the Department of Applied Mathematics of the VŠB – Tech-

nical University of Ostrava.
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k SSNM – Alg. 1 SSNM – Alg. 2 fixed point

1 6.13 · 101 6.13 · 101 6.00 · 104

2 6.53 · 10−1 6.53 · 10−1 3.30 · 100

3 5.62 · 10−4 5.62 · 10−4 2.97 · 100

4 3.17 · 10−7 3.17 · 10−7 3.30 · 10−3

5 8.08 · 10−10 7.85 · 10−10 3.13 · 10−4

6 7.38 · 10−6

7 4.75 · 10−7

8 1.92 · 10−8

9 1.01 · 10−9

10 4.54 · 10−11

Table 1: ‖rtot‖ values.
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[2] Motyčková, K. and Kučera, R.: Semi-smooth Newton method for solving 2D

contact problems with Tresca and Coulomb friction. Advances Electr. Electron.

Engrg. 11 (2013), 218–226.

[3] Popp, A., Gee, M.W., and Wall, W.A.: A finite deformation mortar contact

formulation using a primal-dual active set strategy. Internat. J. Numer. Methods

Engrg. 79 (2009), 1354–1391.

[4] Wohlmuth, B. I.: Variationally consistent discretization schemes and numerical

algorithms for contact problems. Acta Numer. 20 (2011), 569–734.

[5] Wriggers, P.: Computational contact mechanics. J. Wiley, Hoboken, NJ, 2002.

36



Programs and Algorithms of Numerical Mathematics 18
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Abstract: The paper studies mesh dependent numerical solution of ground-
water problems with singularities, caused by boreholes represented as points,
instead of a real radius. We show on examples, that the numerical solution of
the borehole pumping problem with point source (singularity) can be related
to the exact solution of a regular problem with adapted geometry of a finite
borehole radius. The radius providing the fit is roughly proportional to the
mesh step. Next we define a problem of fracture-rock coupling, with one part
equivalent to the singular point source problem and the second part with a uni-
form flow. It is a regularized problem, but with the mesh dependence similar
to the radial flow, in a certain range of steps. The behavior is explained by
comparing the numerical solution with the analytical solution of a simplified
problem. It also captures the effects of varying physical parameters.

Keywords: finite elements, mesh dependence, borehole, radial flow
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1. Introduction

Although not mentioned among the main challenges in groundwater modelling,
the issue of singularity, related to boreholes represented by a single point (in 2D) or
line (in 3D), is not fully resolved, also because it is studied differently in theoretical
work and in practical applications or simulation software.

The problem of point source in groundwater flow is shortly specified in 1.1. The
singularity in the problem is a result of problem abstraction, convenient for handling
the problem technically. The real case is that a borehole has a finite radius, but
very small compared to the problem domain, which is inconvenient for meshing.
On the other hand, a problem of a single borehole in homogeneous medium can
be efficiently solved analytically. There are several either empirical or theoretical-
based methods, introducing the analytical solution of the radial flow in the local
scale to be coupled with a coarser mesh numerical solution – the analytical element
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Source/b.c.
b.c.

b.c.

Figure 1: Left: radial flow around borehole in a singular form. Middle: configuration
of boundary for numerical solution. Right: radial flow in a regular problem form.

method [2], Peaceman model in the field of reservoir engineering [6, 3], or the concept
of extended finite element method (XFEM) with the enrichment functions based on
the local analytical solution, e.g. [4].

The background is also different than studies aiming to approximate the singu-
lar problem solution and interpreting the numerical precision, e.g. [1] for the Dirac
right-hand side with an a-priori set mesh refinement. Instead, we study the mesh
dependence of the approximate solution in relation to a replacement problem, which
gives a simpler understanding in the context of the finite borehole radius (alterna-
tively to [3]). For such case, a sequence of fixed meshes is used, made by standard
generators based on prescribed step at the boundary. This is subject of the first
part of the paper and also a background for the second part, where we introduce
a specific groundwater geometric configuration with analogous features but different
interpretation of the mesh dependence.

1.1. Problem and singularity characterisation

The groundwater flow in its simplest form is a potential field, governed by linear
Darcy’s law and the mass balance equation,

v = K∇p , ∇ · v = f , (1)

where p is pressure head, v is flux density (velocity), K is hydraulic conductivity, and
f are sources/sinks. Flux q meaning the integral of v is used in the solved problems.

In the borehole inflow configuration of Fig. 1, the singularity appears for the
Dirac right-hand side, i.e. finite flux concentrated to a point as infinite spatial den-
sity, resulting to a generalised solution with infinite pressure at the point. Another
formulation is with given finite pressure in the borehole, which can either be a bound-
ary condition (formally, for the circular sector domain), or an additional constraint
on the pressure solution together with related degree of freedom in the source/sink
function f . The same is the asymptotic case of a finite borehole problem, solved
analytically below.

For a real borehole, neither case is physically realistic, as the measured values of
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flux and pressure are always finite, and any kind of solution needs to introduce the
borehole diameter as a parameter.

2. Borehole-driven radial flow problem

The example problem is a case of radial-symmetric flow into a borehole, which
can be expressed either by a circle with the borehole in its center or by any sector
of such circle (Fig. 1), with the radius r as one variable. The analytical solution is
simply derived from 1D radial form of (1) by applying the separation of variables
method. With pressure boundary conditions p(r1) = p1 and p(r2) = p2, the solution
is

q(r) = 2πK
p2 − p1

ln r2
r1

, i.e. q(r) = const = q , (2)

p(r) = p1 + (p2 − p1)
ln r

r1

ln r2
r1

, (3)

considering the flux q over the full circumference. We see the singularity as the
asymptotic behavior of the formulas for r1 → 0, i.e. q → 0 for finite p1 while
p1 → −∞ for a non-zero q. We study the first case in the following work, i.e. the
dependence q[r1], which is our notation for the parametric dependence on the problem
geometry, to distinguish from the solution as a function of its space variable.

The study is based on comparison between the numerical solution of the singular
problem with dependence on a mesh step h, and the analytical solution of the regular
problem (2) with dependence on r1. We use the circular sector geometry for the
numerical problem (2D meshing). The boundary condition p = p1 representing the
borehole (singularity) is introduced to one node value of the standard finite element
discretisation with piecewice linear base functions. The parameters used are r2 = 10,
K = 1, p1 = 0 and p2 = 1.

The comparison is made in two ways: the numerical q[h] dependence against
analytical q[r1] dependence for the choice r1 = h and an “inverse” problem of finding
an effective borehole diameter r1 to fit the numerical q value by the analytical one.
We use more variants of mesh topology and, for each, a set of meshes of varying
step h at the borehole boundary point is generated. So we can check other possible
influences than the h value.

In the mesh set of type A, each refinement is generated independently, only
based on the prescribed step h at the borehole and a different step along the outer
boundary, resulting in either more uniform or more graded meshes. Three such sets
of different domain angles ϕ = 45◦, 60◦, and 90◦ are generated, denoted as A-45,
A-60, and A-90. The set of type B, for ϕ = 60◦ only, is constructed from the coarsest
uniform mesh by sequential splitting of each triangular element uniformly, resulting
in the same topology of all meshes in the set.

The results for a range of mesh steps are presented in Fig. 2. The parametric
dependence of the flux is visually very similar between the analytical solution and
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Figure 2: Relation of the numerical and analytical solution of radial flow for various
mesh topologies: left is the resulting flux depending on either the mesh step or the
borehole radius (scaled to equivalent of ϕ = 60◦), right is the ratio of equivalent
analytical solution radius (r1) to a given numerical discretisation step.

the numerical solution (for r1 = h), but the fluxes are not proportional, as seen from
the evaluated ratio.

The effects of different meshes of the same h are often invisible for q[h], in general
less then 10%, but they are detected in the inverse problem of effective r1. The
ratio of the given h and the fitted r1, depending on h, is plot in Fig. 2 (right). The
dependence can be evaluated as a constant, but with significant deviations related
to different origin of the mesh. It leads to a hypothesis that the effective behaviour
of the numerical solution with “point boundary” corresponds to the desired solution
of the radial flow with particular radius, proportional to the mesh step. A precise
relation could depend on the choice of numerical scheme and mesh topology.

3. Fracture-block coupling problem

3.1. Real-world motivation

The rock hydraulic conductivity K can change over many orders of magnitude
and blocks of very different K are often parts of a single modelling problem. Within
the low-permeable rocks, the water can be conducted along planes like fractures
or tectonic faults; these are domains with orders of magnitude larger than K and
small thickness. To get a measure of contribution to the total flux in a domain,
the transmissivity is defined as a product of K and the thickness. If the fracture is
represented as plane, the problem, in its vertical cross-section (2D), is a composition
of a rectangle and a line (Fig. 3). It creates, at their contact, a singularity within
the rectangle domain, similar to the borehole point source problem. Again, it is an
effect of the model abstraction, while no sharp K changes or block edges would exist
in the real rock.
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porous block contact for the numerical study with the boundary conditions. Right:
derived simpler analogue of coupled radial flow (circle) and uniform flow (line).

3.2. Problem configuration

The test problem to demonstrate numerical features is illustrated in Fig. 3 (mid-
dle). The configuration is an analogue of the problem in Decovalex-2015 bench-
mark [5], where the question of possible mesh dependence arised. Besides using
reflection symmetry, there are two main differences against the real-world concept
(Fig. 3 left):

One is in extending the fracture (line) domain along the whole rock (rectangle)
domain in order to establish a communication between the domains which would not
be possible for the mixed-hybrid finite elements through one node. Considering the
fracture transmissivity is not significantly larger than the rock block transmissivity
(realistic assumption because of the large rock volume), the problem should not be
affected much quantitatively.

The second adaptation excludes the part of the line not in contact with the
rectangle. The total flux is controlled by a “serial connection” of the line along
the rectangle and the line below the rectangle. The latter is controlled by a linear
relation of pressure gradient and flux, so the difficulty related to the singularity is
present only in the rectangle part, which we concentrate on.

The domain dimensions are 50×50, as well as r2 = 50 in the problem of Section 3.3
for comparison. The boundary pressure values are p1 = 0 and p2 = 1, and the
coefficients are listed in Section 3.4.

3.3. Simplified analytical solution

To get an analytical solution for comparison, the problem needs to be significantly
simplified (Fig. 3 right): a circular sector between two radii, r1 inner and r2 outer,
and a line with coordinates between the same r1 and r2. We assume radial symmetry
and ideal contact between the domains, i.e. a common value of pressure p(r) for both
the radial flow and the uniform flow. There are two variables for the flux, q(r) in
the circular domain and qL(r) in the line domain. For simplicity, we consider the
unit thickness of the circular domain and the unit cross-section of the line domain,
without loss of generality.
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The system of equations for the choice of the circular sector angle ϕ is

q(r) + qL(r) = const = Q, (4)

q(r) = ϕK r
dp

dr
, (5)

qL(r) = KL
dp

dr
, (6)

where K and KL are hydraulic conductivities of the respective subdomains.
The analytical solution is a generalisation of the radial flow, with mostly technical

differences. Substituting both q and qL into the first (mass balance) equation, we
get a form ready for separation of variables, p and r. Then two constants, the total
flux Q and the integration constant, are evaluated from the two boundary conditions.
The results are

Q = ϕK
p2 − p1

ln ϕKr2+KL

ϕKr1+KL

, (7)

p(r) = p1 + (p2 − p1)
ln ϕKr+KL

ϕKr1+KL

ln ϕKr2+KL

ϕKr1+KL

. (8)

Additionally, we can derive qL(r) and q(r). Then we evaluate the asymptotic problem
behavior for r1 → 0. Obviously, the term KL regularizes the solution, so that
Q[r1] converges to a finite value composed, at the boundary, of finite qL[0](0) and
zero q[0](0).

3.4. Parameter sensitivity

The asymptotic behavior for r1 → 0 is strongly related to the magnitude of ϕK
versus KL, which is demonstrated in Fig. 4 for K = 10−8 and two choices KL = 10−7

and KL = 10−10. For dominating conductivity of the circular domain (Fig. 4 left),
the certain range of r1 dependence is similar to the singularity case of the radial
flow alone, requiring substantially small r1 to exhibit the convergence through the
contribution of the line domain. For small r1, most of water comes through the
line domain at the r1 boundary and the flux q[r1](r1) decreases much more quickly
with r1 than would for the pure radial flow problem. Contrary, for dominating
conductivity of the line domain (Fig. 4 right), the q contribution quickly vanishes
with decreasing r1 and the changes of Q[r1] are relatively smaller.

3.5. Numerical tests

We compare the dependence of the analytical solution on r1 (total flux Q[r1]) with
the dependence of the numerical solution (flux through the Dirichlet boundary bot-
tom right corner) on mesh step h in Fig. 5. We note that, contrary to the previous
case of radial flow, the solution used for the comparison is for a significantly simpli-
fied problem – in particular, not capturing that the 2D domain is not exactly radially
symmetric and there is not necessarily an equilibrium between the domains. Two
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Figure 4: Analytical solution of the coupled circle-line flow problem showing con-
vergence with decreasing inner radius, different for either dominant circle (left) or
dominant line (right). The “radial only” and “line only” cases are solutions on each
of the subdomains uncoupled, with the same boundary conditions.

different finite-element versions are used – the standard linear FEM with shared de-
grees of freedom of the rectangle side and the line and the mixed-hybrid (MH-FEM),
with separate degrees of freedom.

There is a lot of common in the mesh-dependence with the radius-dependence,
but the quantitative relation is not so clear as for the radial flow in Section 2. The
mesh dependence disappears for sufficiently small h, which suggests the convergence
of the solution like in the simplified analytical problem for r1 → 0.

The physical parameter sensitivity is also well reproduced: there is a little mesh
dependence for large KL (even negligible for KL = 10−6, not shown), contrary to the
significant mesh dependence for small KL, disappearing for very small h. The mesh
step size, necessary for Q[h] to get steady, is typically one order of magnitude larger
then the radius, for which the analytical solution dependence on r1 disappear, and
this position is roughly proportional to KL (Fig. 5).

On the other hand, the trends of Q[h] differ between the numerical schemes. The
standard FEM solution Q decreases with mesh refinement similarly to the analyti-
cal Q[r1] (total flux). The MH-FEM solution rises with the mesh refinement, similarly
to the curve of the analytical qL[r1] (line-only flux). It can be explained by a struc-
ture of the discrete unknowns: in the used implementation of the standard FEM, the
boundary condition is prescribed to a shared node while in the MH-FEM, the b.c. is
introduced to the line (see the red b.c. circle in Fig. 3 middle), which is then coupled
to the rectangle, making the line domain more significant for the overall hydraulic
resistance.

The flux at the mesh refinement limit lies between the analytical solution for
ϕ = π/3 and ϕ = π/2. It means that only a part of the numerical problem domain
(corresponds to ϕ = π/2) is effectively covered by the flow, as it is deviated from the
radial symmetry (more for larger fracture contribution).
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Figure 5: Mesh dependence of the block-fracture problem numerical solution com-
pared to the radius dependence of the circle-line analytical solution (two choices of ϕ)
for K = 10−8 and a range of KL, from fracture-dominant to block-dominant.

4. Conclusion

We have shown for the radial flow problem that the mesh dependence of the nu-
merical solution, resulting from the singularity property of the point source/bound-
ary, can have a physical meaning equivalent to the dependence of the real flow on the
borehole radius. The mesh step providing the fit is roughly proportional to the bore-
hole radius with a factor between 5 and 6 for meshes close to uniform while a larger
deviation appears for more graded meshes. It could be a topic for further study to
predict the relation theoretically from a numerical scheme. Such mesh choice can be
useful as an alternative for adaptive mesh refinement based on error analysis. The
error in flux is appropriate for groundwater data accuracy.

For the fracture-rock coupling problem, the extension of the fracture along the
block regularizes the problem, although the mesh dependence is still present depend-
ing on the singularity component dominance. The mesh and the physical parameter
dependence can be predicted by a relatively simple analytically solvable problem, in
particular the position of visual convergence. Also, we have shown how the solution
is sensitive on the position of the discrete unknowns.
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Department of Mathematics, University of West Bohemia
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Abstract: In this paper we summarize three recent results in computational
geometry, that were motivated by applications in mathematical modelling of
fluids. The cornerstone of all three results is the genuine construction devel-
oped by D. Sommerville already in 1923. We show Sommerville tetrahedra can
be effectively used as an underlying mesh with additional properties and also
can help us prove a result on boundary-fitted meshes. Finally we demonstrate
the universality of the Sommerville’s construction by its direct generalization
to any dimension.
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1. Introduction

Many computational methods require or prefer simplicial meshes as the underly-

ing geometrical playground. In two dimensions the best triangle among all, measured

by various regularity criteria, is the equilateral triangle, which is a space-filler. In

higher dimensions the situation is different, as already for d = 3 the equilateral

tetrahedron cannot tile the space, see [13].

If the equilateral tetrahedron cannot be taken as the standard, is there any other

playing such role what concerns space-filling? The answer is affirmative, as we show

in the sequel. Moreover, an answer to that question will be generalized to a general

dimension.
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The cornerstone of this paper is the construction proposed by Sommerville already

in 1923, see [14]. It takes the unit equilateral triangle A0A1A2 as a base and creates

the points B0, B1, B2, ... above the three original points satisfying

Bz = [Ai(z), zp], z ∈ Z, where i(z) ≡ z mod 3, (1)

and p is a positive parameter. Then the tetrahedra are defined as convex hulls of

four consecutive points, which we denote co{Bz, Bz+1, Bz+2, Bz+3} =: Kz
3 . Three

such tetrahedra are sketched in Figure 1. Obviously, this construction enables to

fill the whole infinite triangular prism by copies of a single element. Repeating this

construction appropriately above all triangles, one gets a face-to-face tessellation of

the three-dimensional space, determined up to a positive constant p, that consists

of congruent tetrahedra, whose representative is denoted by K3(p). For more details

we refer to [7].

The paper is devoted to three recent author’s results based on the above construc-

tion. These can be found in their full detail in [7], [9] and [8]; here we provide their

brief summary with some additional comments. Each of these results is presented in

a separate section.

x1
A1

B1

B4

1

B3

1

A0 = B0

x3

1

A2

B5

B2

x2

Figure 1: Illustration of the Sommerville’s construction.
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2. Well-centered Sommerville tetrahedra and their shape-optimization

This result was motivated by the work of Feireisl et al. [4], in which the con-

vergence of a numerical scheme to the compressible Navier-Stokes-Fourier system in

three spatial dimensions is proven. While the target system is confined to a smooth

bounded domain Ω, the numerical scheme is supposed to be defined on a family of

polyhedral domains {Ωh}h→0, for which Ω ⊂ Ωh and maxx∈∂Ωh
dist[x, ∂Ω] ≤ h. This

approach, known as variational crime, see e.g. [2], is known to decrease the rate of

convergence, upon the condition that conforming elements are used. This is, how-

ever, not the case in [4], where non-conforming Crouzeix-Raviart elements are used

for velocity.

Numerical domains Ωh are supposed to admit face-to-face tetrahedral meshes Th

(where h denotes the characteristic diameter of the elements), satisfying the strong

regularity property.

Definition 1 (Strong regularity). Let {Th}h→0 be a family of meshes. If there exists

θ0 > 0 independent of h such that for any Th and any K ∈ Th it holds that

θ(K) :=
̺(K)

diam K
≥ θ0, (2)

where ̺(K) is the radius of the largest ball contained in K, then we say that {Th}h→0

is a strongly regular family.

One can also define strong regularity with different regularity ratios. Equivalency

of some of these definitions can be found in [1]. The terms shape regular or regular

family of meshes can be found within the literature for the property (2).

Further, the tetrahedral elements of the mesh in [4] is assumed to satisfy so-called

well-centered property, introduced by VanderZee, see e.g. [16]. A well-centered sim-

plex contains its circumcenter in its interior; this ensures that the segment connecting

the circumcenters of two neighbouring elements is perpendicular to their common

facet and does not degenerate. This property is used in the numerical scheme for

the balance of temperature. For the sake of brevity, we use the term well-centered

mesh instead of the more proper d-well-centered mesh.

Definition 2 (Well-centered property). Let Kd := co{V0, V1, . . . , Vd} be an d-dimen-

sional simplex. We say that Kd is well-centered if its circumcenter lies in the interior

of Kd.

We would like to point out that in two dimensions the well-centeredness coincides

with acuteness, while in higher dimensions it is no longer true, see some illustrations

in [15].

With all the above said, the idea for finding the polyhedral domains Ωh and

meshes Th was the following. First, to find a face-to-face well-centered tetrahedral

tessellation of the whole three-dimensional space with the size of the elements not
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exceeding h and then to pick those elements whose intersection with Ω is non-empty.

Their union then builds Ωh.

We use the Sommerville’s result, which can be scaled to provide the desired

tessellation. By virtue of a sufficient condition introduced by VanderZee, [16, Theo-

rem 1] and elementary geometric calculations, we are able to determine the range of

parameters, for which the elements are well-centered.

Theorem 1 ([7], Theorem 3.3). The tetrahedra constructed by the method described

in Section 1 are well-centered if and only if p ∈
(

0,
√
2/2

)

.

Basically any parameter from given range would give a satisfactory mesh. How-

ever, it is obvious that parameters in the middle of the interval are better than those

at its edges; for p small we obtain flat tetrahedra of the wedge type that are close

to degenerate ones, while for p →
√
2/2 the distances of neighbouring circumcenters

degenerate. Therefore, we determine a shape optimal parameter within this range.

Theorem 2. Let K3(p) be a tetrahedron constructed by the method in Section 1 and

let θ be the regularity ratio defined by (2). Then θ(p) := θ(K3(p)) is maximal for

p = p⋆ =
√
2/4.

The value p⋆ is optimal also for regularity ratio (6) that is used later in Section 4

and also for the ratio of circumradius and inradius of an element, which is the original

assertion [7, Theorem 4.3].

While the general p ∈ (0,
√
2/2) gives a well-centered mesh that consists of a tetra-

hedra that are congruent to each other, for p⋆ we get a mesh build by copies of a single

element, which also trivially implies the strong regularity property. The element is

an equifacial tetrahedron, see [6]. As for Naylor [12], it is the most regular tetrahe-

dron, whose copies tile the three dimensional space. Thus it can (and in the next

section will) be used as a reference tetrahedron for measuring the shape regularity.

3. Strongly regular family of boundary-fitted meshes

The second result is also motivated by a numerical scheme for compressible flow

on an unfitted mesh. For establishing error estimates to a numerical scheme for com-

pressible Navier-Stokes equation in three dimensions in [3], the weak-strong unique-

ness principle, see [5], is used. For this reason, the existence of a strong solution is

assumed. But the system is known to possess strong solution only on sufficiently

smooth domains. Therefore, the target system is confined to a bounded domain

Ω ∈ C3, while the numerical scheme is designed on a tetrahedral mesh Th that fills

a polyhedral domain Ωh. There is no inclusion of the domains Ωh and Ω assumed,

but both domains shall be close to each other. We require for all x ∈ ∂Ωh that

dist[x, ∂Ω] ≤ dΩh
2, (3)

with the constant dΩ depending solely on the geometry of Ω. This is easily ensured

by placing the vertices of the polyhedral domain Ωh at the boundary of the smooth
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domain Ω. We call such mesh boundary-fitted. To prove (3), one just uses the Taylor

expansion.

Again, for the convergence, we need to assume that the family of polyhedral

domains is strongly regular. The question of existence of a strongly regular family of

boundary-fitted simplicial meshes to a C2 domain is affirmative in two dimensions

thanks to [10]. We attack the three-dimensional case and the result reads as follows.

Theorem 3 ([9], Theorem 1). Let Ω be a bounded domain in R3 of the class C2, with

the minimal radius of an osculation sphere equal to rΩ. Let for some h1 sufficiently

small there exists (Ωh1
, Th1

) an approximative domain with boundary-fitted mesh and

let

θ(K) ≥
α

rΩ
diam K,

for any K ∈ Th1
, where θ is defined in (2) and α > α0 = 32(2 +

√
5)
√

2/3.

Then there exists a strongly regular family of boundary-fitted meshes {Th}h→0.

The assumption is easy to be fulfilled, as the initial regularity requirement gets

weaker with decreasing discretization parameter. The proof is based on the result of

Kř́ıžek, see [11], that shows that a Sommerville tetrahedron, i.e. tetrahedron K3(p
⋆)

from Section 2, can be decomposed into eight identical tetrahedra that are similar to

the original one. As a consequence, any tetrahedron of the size h can be decomposed

into eight tetrahedra of the size not exceeding h/2 while the regularity is preserved.

Hence we decompose the initial mesh, the newly established vertices that lie on ∂Ωh

get shifted to the smooth boundary ∂Ω and we show, that the regularity does not

deteriorate too much. The shifts of these vertices are performed by affine mappings.

This was our motivation to employ a new regularity criterion, based on the similarity

of a tetrahedron with the reference one, Sommerville tetrahedron.

Definition 3. Let K = co{A,B,C,D} be a tetrahedron,

AK := {FK ;FK an affine transformation, FK( ˜K) = K}

be a set of all affine transformations mapping Sommerville tetrahedron ˜K onto K.

Then we define the Sommerville regularity ratio of tetrahedron K as

κ(K) = max
FK∈AK

σmin(FK)

σmax(FK)
,

where σmin(FK), σmax(FK) are the minimal and maximal singular values of FK .

We are able to show, that this regularity criterion is equivalent to the other stan-

dard ones in the sense of strong regularity, hence the whole proof can be performed

in the terms of κ. The details of the laborious and technical proof can be found in [9].

Here we just point out that the final argument is based on the following inequalities,

n−1
∏

j=0

(1− aqj) > lim
n→∞

n−1
∏

j=0

(1− aqj) = P (a, q) > 0,

for any n ∈ N and a, q ∈ [0, 1].
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4. Space-filling simplices in general dimension

The last of the triplet of results is motivated by the Sommerville’s construction

itself. One can view it as a method of creating the tessellation of d-dimensional space

out of (d− 1)-dimensional one.

The idea is to take a simplex of a tessellation of the (d−1)-dimensional space and

create the infinite prism made of d-dimensional simplices above it. More specifically,

for a simplex K ∈ Td−1, where K = co{A0, A1, . . . , Ad−1} we construct points Bz

satisfying

Bz = [Ai(z), zp], z ∈ Z, where i(z) ≡ z mod d, (4)

compare (4) with (1). The simplices are defined as convex hulls of d+ 1 consecutive

points Bz. Performing the same above all simplices of the original (d−1)-dimensional

tessellation, one recovers a face-to-face simplicial tessellation of d-dimensional space,

as it is summarized in the following lemma.

Lemma 1 ([8], Lemma 2.2). Let d ≥ 2 and Td−1 = {Kk
d−1}k∈Zd−1 be a simplicial

tessellation of (d−1)-dimensional space such that the graph constructed from vertices

and edges of Td−1 is a d-vertex-colorable graph. Then

• there exists Td = {Ll
d}l∈Zd a simplicial tessellation of d-dimensional space with

additional shape parameter pd,

• any connected compact subset of Td is a face-to-face mesh,

• Td is a (d+ 1)-vertex-colorable graph.

The vertex coloring is a tool which ensures the face-to-face property and guar-

antees that above a vertex (that is shared by several simplices) the new points are

constructed consistently, in the same heights above each element. Lemma 1 provides

us with the induction step, the initial step is given as a straight line discretized

equidistantly using p1 > 0 with points of alternating colors. Thus, we can state the

following.

Theorem 4 ([8], Theorem 2.1). For any d-dimensional space there exists a d-para-

metric family of simplicial tessellations Td(p),p = (p1, p2, . . . , pd), pi > 0. For

p fixed, all elements K ∈ Td(p) have the same d-dimensional measure equal to

measdK =

d
∏

i=1

pi. (5)

Moreover, every connected compact subset of the tessellation builds a face-to-face

mesh.

We obtained a tessellation that is determined up to a d-dimensional vector of

positive parameters p = (p1, . . . , pd). Therefore, we determine the shape-optimal
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vector of parameters. To benefit from the equivolumetricity property (5), we decided

to optimize the ratio

ϑ(K) =
measdK

(diam K)d
, d ≥ 2. (6)

In particular, we are looking for an element K⋆ and a vector p⋆ satisfying

ϑ(K⋆(p⋆)) = sup
p∈Rd

+

min
K∈Td(p)

measdK

(diam K)d
, (7)

as in general all the elements are not equal. We are optimizing the worst element,

which is the one with largest diameter. Luckily, there is only a limited number of

candidates for the diameter, therefore (7) can be viewed as an optimization prob-

lem with nonlinear constraints. Such optimum must satisfy so-called Karush-Kuhn-

Tucker conditions. These are always necessary, but sufficient only when the optimized

function is convex.

Since we are not able to show the convexity, we prove that the minimizer exists

and that there is a unique vector p
⋆ that satisfies these conditions. Then p

⋆ must

be the minimizer. To be precise, the above is true after fixing p1, which obviously

plays the role of a scaling parameter and as such does not affect the shape of the

simplices. The statement reads as follows.

Theorem 5 ([8], Theorem 3.1). Let d ≥ 2 and let Td(p) be a tessellation constructed

through the procedure introduced above. Then there exists a unique one-dimensional

vector half-space

P ⋆=

{

p
⋆,κ ∈ Rd

+|p
⋆,κ=κp⋆, κ>0, p⋆1 = 1, p⋆2 =

1
√
3
, p⋆j =

1

j − 1

√

2

3
, j ∈ {3, . . . , d}

}

,

of optimal parameters that realize

sup
p∈Rd

+

min
K∈Td(p)

measdK

(diam K)d
. (8)

The detailed proof can be found in [8]. Here we just point out two interesting

remarks.

The result of the optimization would be the same, if one optimizes at every level

of the construction, which is a one-dimensional optimization that is much easier.

In other words, a shape optimal tessellation cannot be created from a sub-optimal

tessellation of a hyperplane.

As it was already mentioned in Section 2, for d = 3 we obtain again the (equifa-

cial) Sommerville tetrahedron. One can verify that for the choice κ =
√
3/2 we get

unit equilateral triangle for d = 2, which was the base for construction in Section 2,

indeed κp⋆3 =
√
2/4.
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Abstract: This work presents the numerical solution of laminar incompress-
ible viscous flow in a three dimensional branching channel with circular cross
section for generalized Newtonian fluids. This model can be generalized by
cross model in shear thinning meaning. The governing system of equations
is based on the system of balance laws for mass and momentum. Numerical
tests are performed on a three dimensional geometry, the branching channel
with one entrance and two outlet parts. Numerical solution of the described
model is based on central finite volume method using explicit Runge–Kutta
time integration. The steady state solution is achieved for t → ∞. In this case
the artificial compressibility method will be applied. In the case of unsteady
computation artificial compressibility method is considered.
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1. Introduction

Branching of pipes occurs in many technical or biological applications. In [13]

the effects of viscoelasticity on the pitchfork bifurcation using a numerical finite vol-

ume method was investigated. Results from both the upper-convected Maxwell and

Oldroyd-B models show that the instability occurs at lower Reynolds numbers for vis-

coelastic fluids in comparison to the Newtonian base case. In [12] computational fluid

dynamics simulations of steady viscoelastic flows through a planar two dimensional

T-junction is considered and the influence of constitutive model and fluid elasticity

upon the main recirculating flow characteristics formed at the junction and the shear

stress fields is studied. In [4] a comparative numerical study of non-Newtonian fluid

models capturing shear-thinning and viscoelastic effects of blood flow in idealized

and realistic stenosed vessels was presented. Reference [2] proposes to analyze the

DOI: 10.21136/panm.2016.07
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pulsatile flow of blood through catheterized stenosed artery considering the Carreau-

-Yasuda model. The effects of tapering angle, body acceleration and magnetic field

are also taken into account. In [1] the unsteady pulsatile magneto-hydrodynamic

blood flows through porous arteries concerning the influence of externally imposed

periodic body acceleration and a periodic pressure gradient are numerically simu-

lated. Paper [7] shows the mathematical models that represent non-Newtonian flow

of blood through a stenosed artery in the presence of a transverse magnetic field.

Here, the rheology of the flowing blood is characterised by a generalised Power law

model.

In previous works [9] and [10] we studied the numerical simulation of generalized

Newtonian and Oldroyd-B fluids flow in 2D branching channel. In this article the

problem of the unsteady numerical simulation for the generalized Newtonian fluids

flow is presented. The modelled domain is the three dimensional branching channel

with T-junction.

2. Mathematical model

The governing system of equations is the system of generalized Navier-Stokes

equations, see [3]. This system consists of the continuity equation

div u = 0 (1)

and the momentum equation

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇P + div T, (2)

where P is the pressure, ρ is the constant density, u is the velocity vector. The

symbol T represents the stress tensor.

For the viscous fluids Newtonian mathematical model for the definition of the

stress tensor T is considered (see e.g. [4])

T = 2µD, (3)

where µ is the dynamic viscosity and tensor D is the symmetric part of the velocity

gradient, D = 1
2
(∇u+∇u

T ).

For the numerical modelling of the generalized Newtonian fluids flow it is neces-

sary to generalize the mathematical models. In this case the viscosity function µγ̇ is

defined by cross model (for more details see [8, 14, 15])

µ(γ̇) = µ∞ +
µ0 − µ∞

(1 + (λγ̇)b)a
, γ̇ = 2

√

1

2
tr D2, (4)

with dynamical viscosities µ0 = 1.6 · 10−1 Pa · s, µ∞ = 3.6 · 10−3 Pa · s, constants
a = 1.23, b = 0.64 and time parameter λ = 8.2 s. For Newtonian flow modelling,

the viscosity is kept constant and equal to µ∞. The relationships between dynamic

viscosity µ and shear rate γ̇ is shown in Fig. 1.
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Figure 1: Viscosity µ - shear rate γ̇ relationships for the two selected viscosity models.

3. Numerical solution

The mathematical models described above are solved numericaly by the artificial

compressibility approach combined with the finite-volume discretization. The arti-

ficial compressibility method [5, 6, 8, 9] is used to obtain an equation for pressure.

It means that the continuity equation is completed by a pressure time derivative

term ∂p

β2∂t
, where β is a positive parameter, making the inviscid part of the system

of equations hyperbolic
1

β2

∂p

∂t
+ div u = 0. (5)

The parameter β for steady simulation is chosen equal to the maximum inlet velocity.

This value ensures good convergence to steady state but is not large enough to make

the transient solution accurate in time. Therefore it is suitable for steady flows only.

The system including the modified continuity equation and the momentum equations

can be written

R̃βWt + F c
x +Gc

y +Hc
z = F v

x +Gv
y +Hv

z , R̃β = diag(
1

β2
, 1, · · · , 1), (6)

where W is the vector of unknowns. By superscripts c and v we denote the inviscid

and the viscous fluxes, respectively.

The space discretization is done by a cell-centered finite-volume method with

hexahedral finite volumes [6, 8, 11]. The arising system of ODEs is integrated in

time by the explicit multistage Runge–Kutta scheme [9].

The flow is modelled in a bounded computational domain where a boundary is

divided into three mutually disjoint parts: a solid wall, an outlet and an inlet. At

the inlet Dirichlet boundary condition for velocity vector and for the stress tensor is

used. For the pressure, homogeneous Neumann boundary condition is used. At the

outlet parts the pressure value is prescribed and for the velocity vector and the stress

tensor homogeneous Neumann boundary condition is used. The no-slip boundary

condition for the velocity vector is used on the wall. For the pressure and stress

tensor homogeneous Neumann boundary condition is considered.
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3.1. Unsteady computation

For numerical solution of unsteady flows the artificial compressibility method

with unsteady boundary conditions is applied [6]. This method consists in modi-

fying continuity equation in the same way as was described above. The question

arises, how big the artificial compressibility parameter β should be in numerical sim-

ulation. Numerical calculations show that β = 6 m ·s−1 (100x higher than for steady

simulation) is the proper choice.

Two different forms of unsteady boundary conditions are considered. First, pre-

scribing the pressure value at the outlet (branch). Second, prescribing the normal

velocity component u at the inlet as

up = upin (1 +K sin(ωt)) . (7)

Here ω is the angular velocity defined as ω = 2πf , where f is a frequency. The

symbol up denotes the pressure or the velocity according to used unsteady boundary

condition. Symbol upin is the constant value obtained from the steady simulation.

Constant K is for the pressure 0.5 and for the velocity it is equal to reference velocity

value. Other boundary condition are considered as in the steady case.

In this work three values of the frequency are tested: f = 2, 5, 10 Hz.

4. Numerical results

This section deals with the comparison of the numerical results of generalized

Newtonian fluids flow for steady case. Numerical tests are performed in an idealized

branching channel with the circular cross-section. Fig. 2 (left) shows the shape of the

tested domain. The computational domain is discretized using a block-structured,

wall fitted mesh with hexahedral cells. The domain is divided to 19 blocks with

125 000 cells.
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Figure 2: Structure of the tested domain (left) and axial velocity profile of tested

fluids (right). Reference radius R = 0.0031 m.
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Figure 3: Velocity isolines of steady flows for generalized Newtonian fluids.

As initial condition the following model parameters are used: reference radius

R = 0.0031 m, branch radius R1 = 0.0025 m, dynamic viscosity µ = 0.0036 Pa · s,
reference velocity U0 = 0.0615 m · s−1, constant density ρ = 1050 kg ·m−3. At the

inlet the Dirichlet boundary conditions for velocity are used, the parabolic profile

with reference velocity value U0. At the outlet the constant pressure values are

prescribed. In Fig. 2 the axial velocity profile close to the branching is shown. The

line for Newtonian fluids is similar to the parabolic line, as was assumed. It is clear

that the shear-thinning fluids attain lower maximum velocity in the central part of

the channel (close to the axis of symmetry) which is compensated by the increase of

local velocity in the boundary layer close to the wall.

In Fig. 3 the velocity isolines and the cuts through the channel are shown. The

axial velocity isolines in the center-plane area for tested fluids are shown in Fig. 4.

It can be observed from these that the size of separation region for generalized

Newtonian fluids is smaller than for Newtonian fluids.

These steady numerical results are used as initial condition for unsteady numer-

ical computation. The artificial compressibility method with high β parameter is

used for the unsteady numerical simulation.
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(a) Newtonian

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

(b) generalized Newtonian

Figure 4: Axial velocity isolines in the center-plane area for generalized Newtonian

fluids.
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Figure 5: The graphs of the velocity as the function of time for three tested values

of frequency - oscillation of the pressure at the outlet.

time [s]

ve
lo

ci
ty

 [m
 . 

s 
  ]

0 0.2 0.4 0.6 0.8 1 1.2

0.0
4

0.0
42

0.0
44

-1

f = 2 Hz f = 10 Hzf = 5 Hz

(a) Newtonian

time [s]

ve
lo

ci
ty

 [m
 . 

s 
  ]

0 0.2 0.4 0.6 0.8 1

0.0
36

0.0
38

0.0
4

-1

f = 2 Hz f = 10 Hzf = 5 Hz

(b) generalized Newtonian

Figure 6: The graphs of the velocity as the function of time for three tested values

of frequency - pulsation of the velocity at the inlet.

Figs. 5 and 6 show the magnitude of the velocity during the time period. The

velocity is taken from the point inside the domain. In Fig. 5 the pressure at the

outlet (branch) and in Fig. 6 the velocity at the inlet are prescribed by (7).

The numerical results (the magnitude of the velocity) are affected by the choice

of the oscillation’s variable (pressure or velocity) as well as by the velocity field. In

the case where the boundary function (7) was used for pulsation of the velocity at

the inlet, the numerical results (Fig. 6) for Newtonian and generalized Newtonian

fluids are very similar independently of the position in the domain. On the other

hand if the oscillation of the pressure at the outlet is considered than the resulting

magnitudes of the velocity (taken in the same point as in the previous case) are

different for Newtonian and generalised Newtonian fluids (6). It is affected by the

type of fluid and by the behaviour of fluids in the branching (the size of separation

region).
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5. Conclusion

Classical Newtonian model as well as its generalized (shear-thinning) modifica-

tion have been considered to model flow in the branching channel with T-junction.

The goal of this study is to investigate shear-thinning effects in steady flow simula-

tions. From the presented velocity profile, it is clear that the shear thinning fluids

(generalized Newtonian fluids) attain lower maximum velocity in the central part of

the channel (close to the axis of symmetry) which is compensated by the increase of

local velocity in the boundary layer close to the wall.

The numerical method used to solve the governing equations seems to be suffi-

ciently robust and efficient for the appropriate resolution of the given class of prob-

lems.

For unsteady simulation Newtonian and generalized Newtonian fluids were con-

sidered. An artificial compressibility approach was considered for numerical solution

of unsteady governing equations. The artificial compressibility parameter β was set

to be 6 m ·s−1. Several values of frequency were tested. Pressure value in the branch

outlet and the velocity value in the inlet were prescribed by a periodic function. The

numerical results given by graphs of the velocity as the function of time in the point

in the domain were presented.

For the future work, extending this unsteady simulation for generalized Oldroyd-B

fluids flow will be considered. The dual-time stepping method will be used.
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Abstract: We present our work on the numerical solution of a continuum
model of flocking dynamics in two spatial dimensions. The model consists of
the compressible Euler equations with a nonlinear nonlocal term which requires
special treatment. We use a semi-implicit discontinuous Galerkin scheme,
which proves to be efficient enough to produce results in 2D in reasonable
time. This work is a direct extension of the authors’ previous work in 1D.

Keywords: discontinuous Galerkin method, semi-implicit time discretization,
nonlocal problems, flocking dynamics

MSC: 65M60, 35Q92, 35Q35

1. Introduction

The study of emergent collective behavior and phenomena in natural and artificial
systems is a very popular and diverse field, cf. [1], [9], [10] for an overview. One
of the topics of interest is that of global coordination of behavior seen in flocks
of birds or other similar self-propelled entities. The study of such problems leads
to descriptions on various levels (particle, kinetic and hydrodynamic) and various
models of the underlying behavior of the individuals, cf. [10]. The paper [7] deals
with the derivation of a hydrodynamic limit of a certain modification of the famous
Cucker-Smale model [2], [3]. The resulting partial differential equation consists of the
compressible Euler equation of gas dynamics, with an additional nonlinear nonlocal
term. The presence of this term leads to difficulties in constructing an efficient
numerical scheme, which would produce results in a reasonable time (e.g. hours)
even on very coarse grids in 1D, cf. [7].

This short note presents results obtained using a two-dimensional version of the
1D numerical scheme presented in [8]. The scheme is based on a semi-implicit time
discretization of the discontinuous Galerkin (DG) scheme from [6] originally applied
to the compressible Euler equations. In [8], the semi-implicit scheme was extended
to include the nonlinear and nonlocal interaction terms of the considered flocking
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model in an efficient way. Here we show how to perform the discretization in the
2D case and present numerical experiments obtained with the resulting scheme.

2. Mathematical model

We consider the hydrodynamic model of flocking derived in [7] as a macroscopic
limit of a modification of the Cucker-Smale model [2], [3].

Let Ω ⊂ Rd, d = 1, 2, be a bounded domain and 0 < L < +∞ is the length of
a time interval. We set QL := Ω × (0, L). We treat the following problem: Find
ρ, E : QL → R, u = (u1, . . . , ud) : QL → Rd such that

∂ρ

∂t
+ div(ρu) = 0,

∂
(
ρu
)

∂t
+ div (ρu⊗ u) +∇p = λA(ρ,u),

∂E

∂t
+ div

(
u (E + p)

)
= λB(ρ,u, E),

(1)

where ρ denotes the density, E energy, p pressure and u velocity. The relations
between E and p are

E = ρ

(
T

γ − 1
+
|u|2

2

)
, p = ρT, (2)

where γ = d+2
d

is the adiabatic constant and T temperature. These quantities
describe the macroscopic behavior of agents behaving according to the microscopic
model considered in [7]. In this context, the basic variables must be interpreted in the
Boltzmannian framework - e.g. momentum ρu and temperature T are the first and
second moments of the density distribution function f(x,v, t) in the corresponding
kinetic (mesoscopic) model from which the hydrodynamic model (1) is derived, cf.
[7].

The right-hand side functions A and B are given by

A(ρ,u)(x, t) =

∫
Rd

ñ(x,y)b(x,y)
(
u(y, t)− u(x, t)

)
· ñ(x,y)ρ(x, t)ρ(y, t)dy,

B(ρ,u, E)(x, t) =

∫
Rd

b(x,y)ρ(x, t)
(
ρ(y, t)ñ(x,y) · u(x, t)ñ(x,y) · u(y, t)

− 2

d
E(y, t)

)
dy,

(3)

where

b(x,y) =
λK

(λ+ |x− y|2)β+1
, ñ(x,y) = (ñ1, . . . , ñd) =

x− y

|x− y|
, (4)
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and K,λ > 0 and β ≥ 0 are given constants.
By omitting the right-hand side terms A,B from (1), we obtain the compressible

Euler equations. In this light, we rewrite system (1) as a system of conservation laws
with a right-hand side source terms:

∂w

∂t
+

d∑
s=1

∂f s(w)

∂xs
= g(w) in QL, (5)

where

w = (w1, . . . , wd+2) = (ρ, ρu1, . . . , ρud, E)> ∈ Rd+2,

f s(w) =
(
ρus, ρusu1 + δs1, ρusu2 + δs2p, (E + p)us

)>
,

g(w) =
(
0,A(w),B(w)

)>
=
(
0,A1(w), . . . ,Ad(w),B(w)

)>
.

(6)

Here δ is the Kronecker delta. The vector-valued function w is called the state vector
and the functions f s, s = 1, . . . , d, are the Euler fluxes. In (5), we write the right-
hand side terms A,B as functions of the state vector w, although in (1), they are
written terms of the nonconservative variables. Expressing A,B in w in a suitable
way is a key ingredient in our scheme and will be described in detail in Section 3.4.

The resulting system is equipped with the initial condition w(x, 0) = w0(x) for
x ∈ Ω. In 1D case we use periodic boundary conditions and in 2D we chose conditions
corresponding to solid impermeable walls, i.e. u · n = 0 on ∂Ω.

Euler fluxes are homogeneous functions, which implies the useful relations

f s(w) = A s(w)w, A s =
Df s
Dw

, s = 1, . . . , d. (7)

Furthermore, the Euler flux is diagonally hyperbolic: The matrix

P(w, n̄) :=
d∑
s=1

A s(w)n̄s (8)

is diagonalizable with real eigenvalues, where n̄ = (n̄1, . . . , n̄d) denotes a unit vec-
tor. This means there exists T(w, n̄) ∈ Rd+2,d+2 and a diagonal matrix D (w, n̄) ∈
Rd+2,d+2 such that

P(w, n̄) = TDT−1, where D (w, n̄) = diag(λ1, λ2, . . . , λd+2). (9)

3. Discretization

Let Th be a triangulation of Ω, i.e. a partition of Ω into a finite number of closed
simplices with mutually disjoint interiors. By Fh we denote the system of all faces
(i.e. nodes in 1D) of Th. For each Γ ∈ Fh we choose and fix a unit normal nΓ, which,
for Γ ⊂ ∂Ω has the same orientation as the outer normal to Ω.
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For each interior face Γ ∈ Fh there exist two neighbours K
(L)
Γ , K

(R)
Γ ∈ Th such

that Γ = K
(L)
Γ ∩ K(R)

Γ . We use the convention that nΓ is the outer normal to the

element K
(L)
Γ . For a function v piecewise defined on Th and Γ ∈ Fh we introduce:

v|(L)
Γ = the trace of v|

K
(L)
Γ

on Γ, v|(R)
Γ = the trace of v|

K
(R)
Γ

on Γ,

〈v〉Γ = 1
2

(
v|(L)

Γ + v|(R)
Γ

)
, [v]Γ = v|(L)

Γ − v|
(R)
Γ ,

where on ∂Ω, we define v|(R)
Γ using the boundary conditions as in [6].

If [· ]Γ and 〈· 〉Γ appear in an integral of the form
∫

Γ
. . . dS, we omit the subscript Γ

and write simply [· ] and 〈· 〉. We shall use the following notation:∫
Fh

F (x) dS =
∑
Γ∈Fh

∫
Γ

F (x) dS

and similarly for
∫
∂K
F (x) dS etc.

Let m ≥ 0 be an integer. The approximate solution will be sought in the space
of discontinuous piecewise polynomial functions

Sh := [Sh]
d+2, where Sh = {v; v|K ∈ Pm(K),∀K ∈ Th}.

Here Pm(K) denotes the space of all polynomials on K of degree ≤ m.

3.1. Discontinuous Galerkin space semidiscretization

Similarly as in [6] in the case of the Euler equations and in [8] in the case of the
1D flocking model, we multiply (5) by a test function ϕ ∈ Sh, integrate over K ∈ Th
and apply integration by parts in the convective terms and rearrange:∫

Ω

∂w

∂t
·ϕ dx+

d∑
s=1

(∫
Fh

f s(w) ns·[ϕ] dS−
∑
K∈Th

∫
K

f s(w)· ∂ϕ
∂xs

dx

)
=

∫
Ω

g(w) ·ϕdx.

(10)
Since w is approximated by a discontinuous function, we use a numerical flux
Hs(w

(L),w(R),n) in the boundary integral term:∫
Fh

d∑
s=1

f s(w)ns · [ϕ] dS ≈
∫
Fh

H(w(L),w(R),n) · [ϕ] dS. (11)

Specifically, in our implementation we used the Vijayasundaram numerical flux,
cf. Section 3.2.

Now we can define the following forms defined for w,ϕ ∈ H1(Ω, Th).
Convective form:

bh(w,ϕ) =

∫
Fh

H(w(L),w(R),n) · [ϕ] dS −
∑
K∈Th

∫
K

d∑
s=1

f s(w) · ∂ϕ
∂xs

dx.
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Right-hand side source form:

lh(w,ϕ) = −
∫

Ω

g(w) ·ϕ dx.

Definition 1. We say that wh ∈ C1([0, T ];Sh) is a DG solution of problem (5) if
wh(0) = w0

h, an Sh-approximation of the initial condition w0 and

d

dt
(wh(t),ϕh) + bh(wh(t),ϕh) + lh(wh(t),ϕh) = 0 ∀ϕh ∈ Sh, ∀t ∈ (0, T ). (12)

3.2. Numerical flux

The choice of the numerical flux is a very important topic in the finite volume and
DG schemes. We use the Vijayasundaram numerical flux, cf. [11], which is suitable
for our semi-implicit time discretization. This numerical flux is based on the flux
vector splitting concept, and can be viewed as an extension of the upwind numerical
flux to systems of equations. We use the diagonal hyperbolicity (9) and define the
positive and negative parts of matrix P:

P±(w, n̄) = T(w, n̄)D ±(w, n̄)T−1(w, n̄), D ±(w, n̄) = diag(λ±1 , λ
±
2 , . . . , λ

±
d+2),

(13)
where λ+ = max {0, λ}, λ− = min {0, λ}. Then P(w, n̄) = P+(w, n̄)+P−(w, n̄) and
we can define the Vijayasundaram numerical flux as

HV S(w(L),w(R), n̄) = P+
(

w(L)+w(R)

2
, n̄
)
w(L) + P−

(
w(L)+w(R)

2
, n̄
)
w(R). (14)

Explicit formulas for P,T,T−1 and D can be found e.g. in [5].

3.3. Time discretization

After choosing some basis of the space Sh, equation (12) represents a system of
nonlinear ordinary differential equations, which must be discretized with respect to
time. Due to severe time step restrictions caused by the nonlocality and nonlinearity
of system (1), we want to avoid using an explicit scheme. However an implicit time
discretization is also very expensive due to its nonlinearity. Therefore we choose the
semi-implicit scheme of [6] as a basis and apply it to our problem.

Let 0 = t0 < t1 < t2 < . . . be a partition of time interval [0, L] and define
τk = tk+1 − tk. We use a first order backward difference approximation for the time
derivative, i.e.

∂wh(tk+1)

∂t
≈ wk+1

h −wk
h

τk
,

where wk
h ≈ wh(tk) and wk

h ∈ Sh. The backward Euler scheme reads(
wk+1
h −wk

h

τk
,ϕh

)
+ bh(w

k+1
h ,ϕh) + lh(w

k+1
h ,ϕh) = 0 ∀ϕh ∈ Sh, (15)
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for all k = 0, 1, . . . . Equation (15) is nonlinear with respect to the unknown wk+1
h ,

therefore we linearize the scheme.
In the convective form, we linearize the interior terms using the homogeneity (7)

as f s(w
k+1
h ) ≈ A s(w

k
h)w

k+1
h . In the boundary terms, we use the Vijayasundaram

numerical flux (14) and linearize by taking the matrices P+
s and P−s from the previous

time level. Thus we get the linearize convective form

b̃h(w
k
h,w

k+1
h ,ϕh) = −

∑
K∈Th

∫
K

d∑
s=1

A s(w
k
h)w

k+1
h · ∂ϕh

∂xs
dx

+

∫
Fh

(
P+
(
〈wk

h〉,n
)
w
k+1,(L)
h + P−

(
〈wk

h〉,n
)
w
k+1,(R)
h

)
· [ϕh] dS.

(16)

In the source terms we again linearize them to obtain the approximation lh(w
k+1
h ,ϕh) ≈

l̃h(w
k
h,w

k+1
h ,ϕh), cf. Section 3.4 for details.

Collecting all the considerations, we obtain the following semi-implicit DG scheme:

Definition 2. We say that the sequence wk
h ∈ Sh, k = 0, 1, . . ., is a semi-implicit

DG solution of problem (5) if for all ϕh ∈ Sh(
wk+1
h −wk

h

τk
,ϕh

)
+ b̃h(w

k
h,w

k+1
h ,ϕh) + l̃h(w

k
h,w

k+1
h ,ϕh) = 0. (17)

3.4. Linearization of the source terms lh

As the 1D case is treated in [8], we demonstrate the linearization of the nonlocal
terms only in 2D. First, we rewrite the right-hand side integrals A and B in terms
of the conservative variables.

g(w(x, t)) =

∫
Ω


0

A1(w(x, t))
A2(w(x, t))
B(w(x, t))

 dy

=

∫
Ω

b(x,y)ρ(x, t)


0

ñ1ρ(y, t)
(
u(y, t)− u(x, t)

)
· ñ(x,y)

ñ2ρ(y, t)
(
u(y, t)− u(x, t)

)
· ñ(x,y)

ρ(y, t)u(x, t) · ñ(x,y)u(y, t) · ñ(x,y)− E(y, t)

 dy

=

∫
Ω
b(x,y)U

(
w(y, t)

)
w(x, t)dy,

(18)

where U
(
w(y, t)) is

0 0 0 0
ñ2

1w2(y, t) + ñ1ñ2w3(y, t) −ñ2
1w1(y, t) −ñ1ñ2w1(y, t) 0

ñ1ñ2w2(y, t) + n2
2w3(y, t) −ñ1ñ2w1(y, t) −ñ2

2w1(y, t) 0
−w4(y, t) ñ1ñ2w3(y, t) + ñ2

1w2(y, t) ñ1ñ2w2(y, t) + ñ2
2w3(y, t) 0

 .
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Approximating w(x, t) ≈ wk+1
h (x) and w(y, t) ≈ wk

h(y) leads to the linearized form

l̃h(w
k
h,w

k+1
h ,ϕh) = −

∫
Ω

(∫
Ω

b(x,y)U
(
wk
h(y)

)
dy

)
wk+1
h (x) ·ϕh(x) dx. (19)

If we use a basis for Sh consisting of functions whose support is exactly one
element, the form (19) does not change the structure of the system matrix, since
it contributes only to the block-diagonal. This is important as other expressions
than (18) are possible, however they lead to a full system matrix which is undesirable.

We note, that the computation of the source terms (19) is very time consuming
due to their nonlocal nature. Even if the basis functions of Sh are local, in order
to evaluate l̃h, we must compute the inner integral

∫
Ω
b(x,y)U2

(
wk
h(y)

)
dy, which is

time consuming due to the slow decay of the function b(x,y).

3.5. Shock capturing and treatment of vacuum

Numerical experiments from the 1D case show that the solution of (1) typically
contains quickly moving shocks and near vacuum states. Often, one observes shocks
neighboring a vacuum, even in the stationary case, which is impossible for the Euler
equations themselves. The situation is quite similar in 2D. To treat these problems,
we include the shock capturing terms of [6]. Furthermore, special attention must be
given to the treatment of the occurrence of vacuum - when ρ, p or T are near zero,
or even numerically negative due to spurious oscillations in the solution, the matri-
ces A ,P+,P− are no longer defined and the computation collapses. We therefore use
the ”postprocessing” approach from [8]. The newly computed state wk

h is modified
thus: if ρ < ε or T < ε, then set ρ := ε or T := ε and recompute the energy E
using relation (2). This defines a new state w̃k

h which is used in (17) instead of wk
h

to compute wk+1
h . In our case, we use ε := 10−5. In combination with the shock

capturing procedure of [6], this yields a sufficiently robust scheme.

4. Numerical tests

We considered the 2D problem on a unit square. In the first numerical experiment
was prescribed the initial density distribution as a Gaussian bump given by ρ(x, y) =
exp(−10|(x, y) − (0.5, 0.5)|2) with constant temperature T = 10 and the velocity
distribution u(x, y) = (0, 0). This is a two-dimensional analogue of the problem
solved in [8]. Similarly as in the 1D case, after an initial phase of rapid oscillations,
was observed the concentration of the hump. Density plots at chosen time instances
are given in Figure 1 (ordered left to right, top to bottom). Due to the concentration
of density, the solution converges to a tall “spike”, so the graphs are cut of at the
same value of 1.1 for clarity.

The second numerical experiment consisted of two neighboring Gaussian bumps,
one smaller than the other in magnitude. In this case, the two groups merged into
one single “flock”, as seen in Figure 2.
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t=0.0 t=0.1 t=0.4

t=0.6 t=0.8 t=1.5

Figure 1: Numerical experiment 1 – density distribution.

t=0.0 t=0.1 t=0.4

t=0.6 t=0.9 t=1.5

Figure 2: Numerical experiment 2 – density distribution.
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We performed both numerical experiments on an unstructured mesh consisting
of 3057 element with piecewise linear approximation. The constants needed in (4)
were chosen as K = 10, β = 0.1, λ = 1, following [7].

5. Conclusions

In this paper we have presented a practical application of the discontinuous
Galerkin method to nonlocal problems, namely for a complicated nonlinear and non-
local version of the compressible Euler equations describing the dynamics of flocks
of birds. Straightforward discretizations of the problem are extremely inefficient due
to its nonlocal nature and the need to evaluate the nonlocal terms too many times.
We shown how to obtain numerical solutions in reasonable time using a very efficient
time discretization of the discontinuous Galerkin method.
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Abstract: The design of an experiment, e.g., the setting of initial condi-
tions, strongly influences the accuracy of the process of determining model
parameters from data. The key concept relies on the analysis of the sensitiv-
ity of the measured output with respect to the model parameters. Based on
this approach we optimize an experimental design factor, the initial condition
for an inverse problem of a model parameter estimation. Our approach, al-
though case independent, is illustrated at the FRAP (Fluorescence Recovery
After Photobleaching) experimental technique. The core idea resides in the
maximization of a sensitivity measure, which depends on the initial condition.
Numerical experiments show that the discretized optimal initial condition at-
tains only two values. The number of jumps between these values is inversely
proportional to the value of a diffusion coefficient D (characterizing the bio-
physical and numerical process). The smaller value of D is, the larger number
of jumps occurs.

Keywords: FRAP, sensitivity analysis, optimal experimental design, param-
eter estimation, finite differences
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1. Introduction

Image processing is one of the fastest growing areas in informatics and applied

mathematics. However, it is not a rare case that a large amount of data, e.g., spatio-

temporal FRAP (Fluorescence Recovery After Photobleaching) images, is routinely
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generated without a clear idea about further data processing. The FRAP technique is

based on measuring the fluorescence intensity (proportional to non-bleached particles

concentration) in a region of interest (being usually an Euclidian 2D domain) in

response to a high-intensity laser pulse. The laser pulse (the so-called bleach) causes

an irreversible loss in fluorescence of some particles residing originally in the bleached

area, without any damage to intracellular structures. After the bleach, we observe

the change in fluorescence intensity in a monitored region reflecting the diffusive

transport of fluorescent particles from the area outside the bleach [9].

The aim of this paper is to establish the link between experimental conditions

(protocol) and the accuracy of the results. The idea is presented in a simplified

case study of FRAP data processing [8], [3]. It serves as a paradigmatic example

of the inverse problem of the diffusion parameter estimation from spatio-temporal

measurements of fluorescent particle concentration. A natural question is how the

experimental settings influence the accuracy of resulting parameter estimates. There

are many rather empirical recommendations related to the design of a photobleaching

experiment, e.g., the bleach spot shape and size, the region of interest (its location

and size), or the total time of measurement, see [9]. However, we should have a more

rigorous tool for the choice of experimental design factors. This goal can be achieved

through a reliable process model, i.e., the Fickian diffusion equation, and through

performing the subsequent sensitivity analysis with respect to the model parameters.

Thus, we can define an optimization problem as the maximization of the sensitivity

measure described in Section 2. The special focus of this paper concerns the search

for the optimal initial condition that in its discretized form represents the bleaching

pattern [2], [5].

The paper is organized as follows. In Section 2, we define the sensitivity measure

and formulate the optimization problem. Section 3 describes a numerical approach

to reach the optimal initial condition. In Section 4, we provide a numerical example

to show that the features of the optimal initial condition strongly depend on the

diffusion coefficient. Finally, some conclusions are presented in Section 5.

2. Problem formulation

We consider the Fickian diffusion problem with a constant diffusion coefficient

D > 0 and assume a spatially radially symmetric observation domain, i.e., the data

are observed on a cylinder with the radius R and height T . In FRAP, the sim-

plest governing equation for the spatio-temporal distribution of fluorescent particle

concentration u(r, t) is the diffusion equation as follows1

∂u

∂t
= D

(

∂2u

∂r2
+

1

r

∂u

∂r

)

, (1)

1We consider the diffusion equation in polar coordinates since both the whole boundary value
problem and the bleaching pattern used in the FRAP experiment have the rotational (axial) sym-
metry. In our preceding papers [8], [4], we employed the Cartesian coordinate system.
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where r ∈ (0, R], t ∈ [0, T ], with the initial and Neumann boundary conditions

u(r, 0) = u0(r),
∂u

∂r
(R, t) = 0. (2)

The main issue in FRAP and related estimation problems is to find the value of

the diffusion coefficient D from spatio-temporal measurements of the concentra-

tion u(r, t), see [7], [8].

Obviously, the measured data are discrete and each data entry quantifies the

variable u at a particular spatio-temporal point (r, t) in a finite domain, i.e.,

u(ri, tj), i = 0 . . . n, j = 0 . . .m,

where i is the spatial index uniquely identifying the pixel position where the value

of fluorescence intensity u is measured and j is the time index (the initial condition

corresponds to j = 0). Usually, the data points are uniformly distributed both in

time (the time interval ∆t between two consecutive measurements is constant) and

space, i.e., on an equidistant mesh with the step-size ∆r, see [4].

Given the data as above, the diffusion coefficient D can be computed numerically

by solving the inverse problem to (1)–(2). Because of unavoidable noise in the data,

one obtains an estimated value D which reasonably well approximates the true D. It

can be shown [1], [4], that for our case of single scalar parameter estimation and white

noise as data error assumed, the expected relative error in D depends on the data

noise and a factor, which we call the global semi-relative squared sensitivity SGRS ,

as follows

E

(

∣

∣

∣

∣

D −D

D

∣

∣

∣

∣

2
)

∼
σ2

SGRS

, (3)

where E is the expected value and σ2 denotes the variance of the additive Gaussian

noise. The sensitivity measure SGRS, that depends on the initial condition, is defined

on a spatio-temporal mesh by

SGRS = D2
n
∑

i=0

m
∑

j=1

[

∂

∂D
u(ri, tj)

]2

, (4)

where ∂
∂D

u(ri, tj) is the usual sensitivity of the model output at the spatio-temporal

point (ri, tj) with respect to the parameter D. It is obvious from this estimate that

if the noise level is fixed, the estimation of D can only be improved by switching to

an experimental design with a higher sensitivity.

The sensitivity measure (4) involves several design parameters. If all the above

parameters R, T,∆r,∆t are fixed, there is only one way to maximize the sensitivity

measure SGRS : to consider the initial condition u0 in (2) as the experimental de-

sign parameter. In the discretized problem, the aim is to find the initial condition

(u0(r0), . . . , u0(rn))
T ∈ Rn+1 such that SGRS is maximized and hence the expected
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error in D is minimized. In order to do so, we establish the bounds where the initial

condition is considered: u0 ≤ u0 ≤ u0, where u0, u0 ∈ R, u0 < u0. The optimization

problem can be formulated as follows

u
opt
0 = arg max

u0∈R
n+1

SGRS(u0) subject to u0 ≤ u0 ≤ u0, (5)

where, for brevity, u0 is interpreted as a vector.

3. Optimization of the initial condition

Based on the parameters R, T , it is convenient to introduce the following scaling

of the space and time coordinates and to define a scaled diffusion coefficient δ

r̃ :=
r

R
, t̃ :=

t

T
, δ :=

DT

R2
. (6)

The concentration u in the scaled coordinates r̃, t̃ then satisfies the equation

∂u

∂t̃
= δ

(

∂2u

∂r̃2
+

1

r̃

∂u

∂r̃

)

, (7)

where r̃ ∈ [0, 1], t̃ ∈ [0, 1], with initial and Neumann boundary conditions

u(r̃, 0) = u0(r̃),
∂u

∂r̃
(1, t̃) = 0. (8)

Let us fix n + 1 as a number of spatial points and m as a number of time mea-

surements. Consider a spatio-temporal grid {r̃i, t̃j}, i = 0 . . . n, j = 0 . . .m, where

r̃0 = 0, r̃n = 1, t̃0 = 0, t̃m = 1, with corresponding spatial and time steps ∆r̃ = 1
n

and ∆t̃ = 1
m
, respectively. Consequently, u(r̃i, 0) = u0(r̃i), i = 0 . . . n, represent

the initial condition (evaluated at discrete points r̃i) and
∂u
∂r̃
(1, t̃j) = 0, j = 1 . . .m,

represent the Neumann boundary condition.

We will use a finite difference Crank-Nicolson scheme to compute a numerical

solution ui,j := u(r̃i, t̃j), i = 0 . . . n − 1, j = 1 . . .m, of the initial boundary value

problem (7)–(8). After some algebraic manipulation [10] we arrive at a linear system

Au.,j = g (9)

for (u0,j, . . . , un−1,j)
T with a three-diagonal symmetric positive definite matrix

A =



















1
4
γ+ −hs0

−hs0 γ+ −hs1
−hs1 2γ+ −hs2

. . .
. . .

. . .

−hsn−3 (n− 2)γ+ −hsn−2

−hsn−2 (n− 1)γ+ − hsn−1
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and a right-hand side

g0 = 1
4
γ−u0,j−1 + hs0u1,j−1,

gi = hsi−1ui−1,j−1 + i γ−ui,j−1 + hsiui+1,j−1, i = 1, . . . , n− 2,

gn−1 = hsn−2un−2,j−1 + ((n− 1)γ− + hsn−1)un−1,j−1.

The Neumann boundary condition implies that un,j = un−1,j. Here

h =
∆t̃

∆r̃
, γ+ =

∆r̃

δ
+ h, γ− =

∆r̃

δ
− h, sk =

2k + 1

4
, k = 0, . . . , n− 1.

The formula (4) for SGRS involves the derivative of the solution u(r, t) of (1)–(2)

with respect to the diffusion parameter D. Taking the scaled variables (6) and using

the derivative of a composite function, we find that

D
∂u

∂D
= D

∂u

∂δ

∂δ

∂D
=

DT

R2

∂u

∂δ
= δ

∂u

∂δ
= δ

∂u

∂t̃

∂t̃

∂δ
= −

Dt

δR2

∂u

∂t̃
= −t̃

∂u

∂t̃
. (10)

Thus the scaled sensitivity measure (4) has the form

SGRS = δ2
n
∑

i=0

m
∑

j=1

[

∂

∂δ
u(r̃i, t̃j)

]2

=

n
∑

i=0

m
∑

j=1

[

t̃j
∂

∂t̃
u(r̃i, t̃j)

]2

. (11)

Replacing the derivative with a finite difference, and using the fact that t̃j = j∆t̃,

the sensitivity measure SGRS can be approximated as follows

SGRS ≈
n
∑

i=0

m
∑

j=1

[

j∆t̃
u(r̃i, t̃j)− u(r̃i, t̃j−1)

∆t̃

]2

=

m
∑

j=1

j2
n
∑

i=0

[ui,j − ui,j−1]
2
=: Sapp(u0(r̃)). (12)

The values ui,j are computed from ui,j−1 using (9), thus no extra work is necessary.

The problem (5) of finding the optimal initial condition u0 maximizing the sensitiv-

ity measure Sapp (the approximation of SGRS) can be formulated algorithmically as

follows.

Algorithm 1. Data: a cylinder radius R, height T , number of spatial points n+ 1,

time measurements m, and a diffusion coefficient D.

1. Perform the scaling of variables (6) to obtain the value δ.

2. Let an initial condition u0 ∈ Rn+1, u0 ∈ [u0, u0] be given.

3. Compute ui,j, i = 0 . . . n, by solving the linear system (9) for j = 1 . . .m.

4. Compute the value Sapp using (12).

5. Repeat steps 2-4 to find u0 such that Sapp is maximal.
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4. Numerical example

As an example to demonstrate the optimal configurations of the initial condition

let us choose parameters

R = 1, T = 1, n = 30, m = 200, u0 = 0, u0 = 1

and use Algorithm 1 to find such an initial condition (u0(r0), . . . , u0(rn))
T ∈ Rn+1

that maximizes Sapp (12) for 1/δ = 5, 10, . . . , 225 (notice the inverse values of δ).2

To solve the optimization problem (5), we used a global optimization method

from the UFO system [6]. This method uses local optimization methods for finding

local minima. Briefly speaking, we choose an initial u
(0)
0 = (1/2, . . . , 1/2)T and

for k = 0, 1, . . . , until the optimality conditions are satisfied, we update the next

iterate u
(k+1)
0 from uk

0 based on the function value Sapp(u
(k)
0 ) and its gradient.

Figure 1 shows the results. For each 1/δ we obtained a solution on the boundary

of the feasible region. Thus, u
opt
0 (ri) ∈ {1, 0} is a binary-valued vector (there exist

non-zero components of u
opt
0 ). As the components of u

opt
0 attain only two values 1

and 0, the vertical lines indicate the non-zero components of u
opt
0 . A small number

of jumps between 1 and 0 in u
opt
0 occurs for large values of δ. When δ decreases

(1/δ increases), the number of jumps increases.

Figure 2 shows the time evolution of the solution ui,j computed using (9) with the

optimal initial condition u
opt
0 in case of δ = 1/20, i.e., computed vectors u(ri, tj) for

j = 10, 20, . . . , 200 with u(ri, t0) = u
opt
0 (ri), i = 0, . . . , n. For increasing time index

j → ∞ the solution tends to a steady-state solution.
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Figure 1: The result of optimization

problem (5): vertical lines indicate the

non-zero components of u
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0 .
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Figure 2: Optimal u
opt
0 for δ = 0.05 and

the time evolution of the solution ui,j

computed using (9).

2The corresponding original diffusion coefficient is D = δ, see (6).
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The following table shows the output from the UFO system for δ = 1/20, where

F denotes −Sapp and X denotes (u
opt
0 (r0), . . . , u

opt
0 (rn))

T . The non-zero components of

the solution have indices i = 11, . . . , 24, i.e., two jumps between u0 = 0 and u0 = 1

occur (see Figure 1).

EXTREM 1 :

F = -0.2537705605D-01

X = 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 -0.1734723476D-17 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.1000000000D+01

0.1000000000D+01 0.1000000000D+01 0.1000000000D+01 0.1000000000D+01

0.1000000000D+01 0.1000000000D+01 0.1000000000D+01 0.1000000000D+01

0.1000000000D+01 0.1000000000D+01 0.1000000000D+01 0.1000000000D+01

0.1000000000D+01 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

5. Conclusion

In this study, the problem of the optimal initial condition for further identifica-

tion of a constant diffusion coefficient was formulated. We set a sensitivity measure

SGRS as the optimality criterion to be maximized in order to have the expected er-

ror minimal, see (4). Afterwards, we used the finite difference scheme to discretize

both the scaled initial boundary value problem (7)–(8) and the sensitivity mea-

sure Sapp eqrefsgrs. Our numerical results indicate that there exists specific optimal

initial condition u
opt
0 that maximizes the sensitivity measure Sapp and therefore min-

imizes the error in the model parameter estimate (diffusion coefficient D), see (3).

In discrete points r0, . . . , rn, the components of the vector u
opt
0 attain only two values

(u0 and u0) and the number of jumps between these values depends on the diffusion

coefficient D. The smaller value of D is (i.e., the slower the particle mobility due

to the diffusion process is), the larger number of jumps occurs. These jumps in fact

represent the discontinuities leading to more complex bleaching patterns, see [5] for

more details.
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[8] Papáček, Š., Kaňa, R., and Matonoha, C.: Estimation of diffusivity of phycobil-

isomes on thylakoid membrane based on spatio-temporal FRAP images. Math.

Comput. Modelling 57 (2013), 1907–1912.

[9] Sbalzarini I. F.: Analysis, Modeling and Simulation of Diffusion Processes in

Cell Biology. VDM Verlag Dr. Müller, Saarbrücken, 2009.
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Abstract: This article is focused on calculating the trajectory of an industrial
robot in the production of composites for the automotive industry. The pro-
duction technology is based on the winding of carbon fibres on a polyurethane
frame. The frame is fastened to the end-effector of the robot arm (i.e. robot-
end-effector, REE). The passage of the frame through the fibre processing
head is determined by the REE trajectory. The position of the fibre process-
ing head is fixed and is composed of three fibre guide wheels with coils of
carbon fibres. The fibre processing head winds three layers of filaments onto
the frame. The polyurethane frame is determined by the local Euclidean co-
ordinate system E3, which has its origin in the REE. We use a mathematical
model and matrix calculus to compute the trajectory of the REE to guaran-
tee the desired passage of the frame through the fibre processing head. The
translation and rotation matrices of the local coordinate system (of the REE)
are calculated with respect to the base coordinate system of the robot.

Keywords: robot trajectory, transformation matrix, Euler angle of rotation,
orthogonal group

MSC: 14P10, 15A04, 15A24

1. Introduction

Composite materials are extensively used in many branches of industry. These
materials successfully replace traditional materials. The technology based on the
winding of carbon fibres by an industrial robot on a polyurethane frame is now
widespread in the manufacturing of composites. After the winding process, the
composite is thermally hardened.

The fibre processing head is fixedly placed in the workspace of the industrial
robot and its coordinates are specified in the base coordinate system of the robot.

DOI: 10.21136/panm.2016.10
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Figure 1: a) The fibre processing head with the three guide wheels for the filament
winding of three layers on the frame. b) The robot with the frame attached to
the REE and fibre processing head only with one fibre guide wheel. c) The base
coordinate robot system and the local coordinate system of the REE.

The fibre processing head contains three fibre guide wheels, each of which includes
twelve fixed coils along the periphery (see Fig. 1a). The outer fibre guide wheels
rotate around their common axis, the central fibre guide wheel is static. The fibre
processing head winds gradually three layers of filaments at the angles of 45◦, 0◦

and −45◦ on the frame during its passage through the fibre processing head (see
Fig. 1a). The frame is attached to the REE (see Fig. 1b). The passage of the frame
through the fibre processing head is controlled by the movement of the REE.

Industrial robots suppliers often offer commercial software modules to control
the robots. These modules are used in areas such as welding, pressing, cutting and
packaging. However, the available software tools are not suitable for our purposes.

2. Mathematical model

A mathematical model of the passage of the frame through the fibre processing
head developed in order to calculate the REE trajectory is described in this chap-
ter. Using the robot base right-hand Euclidean coordinate system E3 (BCS), we
will describe the REE movements and rotations during the passage of the frame
through the fibre processing head. The local right-hand Euclidean coordinate sys-
tem E3 (LCS) of the REE (see Fig. 1c) is also taken into account. To avoid any
confusion, the points and vectors with the coordinates in the BCS are labelled with
the subscript BCS, while the points and vectors with the coordinates in the LCS are
labelled with the subscript LCS.

2.1. Industrial robot

The origin of the LCS is positioned in the REE. The actual position of the LCS
with respect to the BCS is determined by the tool-centre-point (TCP ). The robot
central unit controls the movement of the REE while using the current TCP .
The TCP contains six values TCP = (x, y, z, a, b, c). The first three parameters

82



Figure 2: a) Example of vertical section through a polyurethane frame (see Fig. 1b)
in LCS. The frame is connected to the REE in the point B(106), N = 106. b) Model
of the fibre processing head in BCS.

specify the coordinates of the origin of the LCS with respect to the BCS. The pa-
rameters a, b and c indicate the angles of the rotations of the LCS around the z, y and
x axes with respect to the BCS.

2.2. Composite frame with a circular cross section

The polyurethane frame is described by its central axis o and its radius rTUBE (see
Fig. 2a). The central axis o is defined in the LCS of the REE through a discrete set
of points B(i)LCS and the unit tangent vectors b1(i)LCS at that points, 1 ≤ i ≤ N .
The initial point B(1)LCS and the end point B(N)LCS can coincide in the case of
a closed frame. In addition, the unit vector b2(i)LCS (1 ≤ i ≤ N) lies in the plane
orthogonal to the vector b1(i)LCS and defines the upward direction at the moment
when the point B(i)BCS passes through the fibre processing head.

The points B(i)BCS and vectors b1(i)LCS, b2(i)LCS are prescribed by a composite
designer to ensure an optimal passage of the frame through the centre of the fibre
processing head. We assume that the discrete set of points B(i)LCS defines the shape
of the frame with a sufficient accuracy. If one or more parts of the axis o are line
segments, then it is sufficient to define only the end points of these line segments.
The variable l represents the distance between the point B(1)LCS and a point on the
axis o. The distance is measured as the o-arc length (see Fig. 2a, a general point A
and distance lA).

2.3. Fibre processing head

The position of the fibre processing head is supposed to be fixed. It consists of
three fibre guide wheels which wind three layers of fibres on the frame under angles
of 45◦, 0◦ and −45◦. The outside rotating wheels are indicated in Fig. 2b as circles k1
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Figure 3: The scheme of the passing frame through the fibre processing head in the
i-th step.

and k2 with centres S1BCS and S2BCS, respectively. Both k1 and k2 have the same
radius rCIRCLE > rTUBE and their centres lie on the axis s of the head. The static
middle fibre guide wheel is not important for our model. The best results can be
achieved if the frame central axis o passes the head through its central point HBCS

and the tangent vector b1(i)BCS (1 ≤ i ≤ N) of the axis o is aligned with the
axis s of the head, represented by a unit vector h1BCS. The longitudial rotation of
the frame is governed by the angle of the vectors h2BCS = (0, 0, 1, 0)T and b2(i)BCS

(1 ≤ i ≤ N). Thus, each point of the frame central axis o should pass through HBCS.
The desired orientation of the frame is then given by the vectors h1BCS and h2BCS.

3. Calculation of the trajectory

The main idea of calculating the REE trajectory is described in this chapter. We
remind that frame is fixed to the REE. The goal is to calculate the REE trajectory
that ensures a gradual passage of the axis o through the centre HBCS of the head in
the desired direction h1BCS. The frame’s initial point of passage is B(1)LCS and the
end point is B(N)LCS. The REE trajectory is determined by the sequence of the
TCPi values, where 1 ≤ i ≤ N . The initial position of the REE corresponds to the
value TCP0.

In the admissible REE position, the two orthogonal vectors and their common
initial point originally defined in the LCS are in the same position in the BCS as
the two fixed orthogonal vectors and their common initial point specified in the BCS
(see Fig. 3); therefore

HBCS ≡ B(i)BCS, h1BCS ≡ b1(i)BCS, h2BCS ≡ b2(i)BCS. (1)

The BCS position and orientation of the REE in the i-th step of the passing of the
frame through the fibre processing head are uniquely determined by the relation (1).
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The central unit of the robot changes the position of the REE on the basis of
the actual values of the TCP . The movement of the REE occurs in the transition
from the TCPi−1 to the TCPi, where the linear or cubic interpolation of the control
parameters is applied.

3.1. Procedure of the TCPi calculation

In this part we focus on the calculation of TCPi, where 1 ≤ i ≤ N . Points,
vectors and matrices are represented in a homogeneous form (i.e. general point
A = (xA, yA, zA, 1)T , vector a = (xa, ya, za, 0)T , this form is suitable for differentiation
of operations with points and with vectors). The Euclidean norm of vector is further
also used.

We calculate transformation matrix Ti from LCS to BCS for the i-th step of
passing the frame through the fibre processing head. The transformation matrix Ti

is generally the product of the translation matrix Li and the rotation matrix Qi, i.e.

Ti = Li ·Qi . (2)

After calculating the rotation matrix Qi we can decompose Qi and determine the
Euler angles of the LCS rotations with respect to BCS. The knowledge of the
translation matrix Li and the Euler angles leads to the determining of the TCPi.

3.1.1. Determination of the rotation matrix Qi in the relation (2)

We determine the rotation matrix Qi ensuring the validity of the last two iden-
tifications in the relation (1).

To determine Qi we suppose temporarily that the origins of the BCS and LCS
are identical and that TCPi−1 = (xi−1, yi−1, zi−1, ai−1, bi−1, ci−1) is specified. The
matrix Qi−1 is defined by the relation (see [4], p. 31)

Qi−1 = Rot(z, ai−1) ·Rot(y, bi−1) ·Rot(x, ci−1),

where Rot(z, ai−1) is the orthogonal rotation matrix of the LCS around the axis z
by angle ai−1 and similarly for the orthogonal matrices Rot(y, bi−1) and Rot(x, ci−1).
These three rotation matrices are

ca −sa 0 0
sa ca 0 0
0 0 1 0
0 0 0 1

 ,


cb 0 sb 0
0 1 0 0
−sb 0 cb 0

0 0 0 1

 ,


1 0 0 0
0 cc −sc 0
0 sc cc 0
0 0 0 1

 , (3)

where sa and ca indicate sin ai−1, cos ai−1 and similarly for cb, sb, cc, sc.
Subsequently, we perform the following steps.

1) The vector b1(i)LCS is expressed in the BCS as b1(i)BCS = Qi−1 · b1(i)LCS.
The deviation α of the vectors h1BCS and b1(i)BCS is determined by using their
scalar product.
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2) We then calculate the cross product nBCS = h1BCS × b1(i)BCS. The vec-
tor nBCS is orthogonal to both the vectors h1BCS and b1(i)BCS. The vector nBCS

is normalized, i.e. nBCS = nBCS/ ‖nBCS‖.
3) Now, the vector b1(i)BCS is rotated by the angle α around the vector nBCS to

vector h1BCS (after rotation, the vector b1(i)BCS coincides with the vector h1BCS).
If we denote the components of the unit vector nBCS = (n1, n2, n3, 0)T then the
matrix Rot(nBCS, α) is of the form (see [4], p. 34)

Rot(nBCS, α) =


c+ n2

1(1− c) n1n2(1− c)− n3s n1n3(1− c) + n2s 0
n1n2(1− c) + n3s c+ n2

2(1− c) n2n3(1− c)− n1s) 0
n1n3(1− c)− n2s n2n3(1− c) + n1s c+ n2

3(1− c) 0
0 0 0 1

,
(4)

where s and c denote s = sinα, c = cosα. Then it is true that

h1BCS ≡ b1(i)BCS := Rot(nBCS, α) · b1(i)BCS = Rot(nBCS, α) ·Qi−1 · b1(i)LCS.

At the same time the vector lBCS = Rot(nBCS, α) ·Qi−1 · b2(i)LCS is calculated.

4) The deviation β of the vectors h2BCS and lBCS is determined by using their
scalar product. We define the rotation matrix Rot(h1BCS, β) describing the rotation
of the vector lBCS around h1BCS to h2BCS. Then it is true

h2BCS ≡ b2(i)BCS := Rot(h1BCS, β) ·Rot(nBCS, α) ·Qi−1 · b2(i)LCS.

The resulting rotation matrix

Qi = Rot(h1BCS, β) ·Rot(nBCSα) ·Rot(z, ai−1) ·Rot(y, bi−1) ·Rot(x, ci−1), (5)

where the elements of the matrix Rot(h1BCS, β) are defined analogously as the ele-
ments of the matrix Rot(nBCS, α) in (4). Now, it is true that h1BCS ≡ b1(i)BCS =
Qi · b1(i)LCS and h2BCS ≡ b2(i)BCS = Qi · b2(i)LCS in the relation (1).

3.1.2. Calculation of the Euler angles

Any right-hand rotation of the Euclidean space E3 around a given unit vector v
is determined by the orthogonal matrix Q = Rot(v, ϑ), where ϑ is the angle of
rotation. It is true that det(Q) = 1 and the elements of the matrix Q are of the
form (4). These rotation matrices create the orthogonal group SO(3) (see [1]). Each
rotation matrix Q can be written in the form (see [4], p. 32)

Q = Rot(z, a) ·Rot(y, b) ·Rot(x, c), (6)

where the matrices Rot(z, a), Rot(y, b), and Rot(x, c) are the orthogonal matrices
of rotations around the axes z, y, x and are of the form (3). Values a, b, and c
are the corresponding Euler angles. We note that the Euler angles are not uniquely
determined by relation (6) (see [3]).
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Now, we describe the procedure to determine the Euler angles entering the ma-
trix Qi in (5). The rotation matrix Qi can be decomposed in accordance with (6) in
the form Qi = Rot(z, ai) ·Rot(y, bi) ·Rot(x, ci). Both sides of the equation (6) writ-
ten for the matrix Qi are multiplied by the matrix Rot(z, ai)

T . The matrix Rot(z, ai)
is orthogonal, therefore Rot(z, ai)

−1 = Rot(z, ai)
T . The equation (6) then reads

Rot(z, ai)
T ·Qi = Rot(y, bi) ·Rot(x, ci). (7)

The rotation angles ai, bi and ci are calculated by comparing suitably selected corre-
sponding elements from the matrix product on the left and right side of equation (7).
By writing the rotation matrix Qi in the form

Qi =


q11(i) q12(i) q13(i) 0
q21(i) q22(i) q23(i) 0
q31(i) q32(i) q33(i) 0

0 0 0 1

 , (8)

we obtain Euler angles ai, bi, and ci by the following expressions

ai = ATAN2(q21(i), q11(i)),

bi = ATAN2(−q31(i), q11(i) · cos ai + q21(i) · sin ai), (9)

ci = ATAN2(q13(i) · sin ai − q23(i) · cos ai, q22(i) · cos ai − q12(i) · sin ai).
The ATAN2(arg1, arg2) function (common in many programming languages) calcu-
lates the value of the arctangent function for the argument arg1/arg2. The signs
of both input parameters are involved in the determining of the output angle of the
ATAN2 function (−π < ATAN2(arg1, arg2) ≤ π).

3.1.3. Determination of the translation matrix Li in the relation (2)

In general, the origin of the BCS and the origin of the LCS have different posi-
tions. We have to translate the LCS relative to the BCS so that B(i)BCS ≡ HBCS.
We determine the translation vector u(i)BCS as follows

u(i)BCS := HBCS −Q(i) ·B(i)LCS − (xi−1, yi−1, zi−1, 0)T , (10)

where Q(i) is given by (5) and xi−1, yi−1, and zi−1 are the first three parameters
of TCPi−1. Then, see (2),

Li =


1 0 0 xu(i)

0 1 0 yu(i)

0 0 1 zu(i)

0 0 0 1

 ,

where xu(i), yu(i), and zu(i) are the components of the vector u(i)BCS, see (10).
The REE is in the admissible position (1) after the transformation (2) of the LCS

of the REE.
The described procedure allows to determine TCPi = (xu(i), yu(i), zu(i), a(i),

b(i), c(i)) for 1 ≤ i ≤ N and thereby the whole REE trajectory when the frame
passes through the fibre processing head.
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4. Conclusion

The algorithm described in Chapter 3 calculates the 3D trajectory of the REE of
an industrial robot during the production of composites using fibre winding technol-
ogy. The described algorithm allows to determine the exact trajectory of the REE,
which provides a significant advantage over the users of the extended teach-in prin-
ciple (technician searches for a suitable trajectory using the robot control panel —
teach pendant). Also, the possibility to accurately determine the desired trajectory
of the REE by the presented algorithm can be beneficial for optimizing the REE
trajectory. The application of the algorithm is completely independent of the type
of robot and software tools.

The use of the procedure for determining the trajectory of the REE does not
increase production costs and can significantly speed up the determination of the
robot trajectory.

The practical results of the robot trajectory calculation during the winding pro-
cess of composite production are described in [2].

Acknowledgements

This work was supported by grant No. TF02000051 of the Institute for Nanoma-
terials, Advanced Technologies and Innovations, Technical University of Liberec.

References

[1] Baker, A.: Matrix Groups: An introduction to lie group theory. Springer-Verlag,
London, 2002.
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Abstract: A key element of microscopic traffic flow simulation is the so-
called car-following model, describing the way in which a typical driver inter-
acts with other vehicles on the road. This model is typically continuous and
traffic micro-simulator updates its vehicle positions by a numerical integration
scheme. While increasing the order of the scheme should lead to more accurate
results, most micro-simulators employ the simplest Euler rule. In our contri-
bution, inspired by [1], we will provide some additional details that have to be
addressed when implementing higher-order numerical integration schemes for
CFMs and we will show that the theoretical gain of higher-order methods is
unfortunately masked out by the stochastic nature of real-world traffic flow.
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1. Introduction

In time-continuous car-following models (CFMs) employed by some microscopic
traffic flow simulators, the acceleration of individual vehicles is described by a func-
tion of the driver’s characteristic behavior and the surrounding traffic. This formu-
lation leads to a coupled set of ODEs which is identical to that of physical particles
following Newtonian dynamics with the physical forces replaced by fictious “social
forces”. While many CFMs have been formulated directly in discrete time in the form
of difference equations, or fully discretely as cellular automata, and can be there-
fore evaluated directly, time-continuous CFMs must be evaluated using a numerical
integration scheme in all but the most trivial analytically solvable cases [3].

The interaction between different vehicles on the road is best described by a pro-
cess where vehicles react primarily on the driving behaviour of their leaders, i.e.
vehicles that drive in front of the modelled vehicles [5]. If formulated in continuous
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form, this class of CFMs is often represented by a coupled system of ODEs modelling
movement of a single vehicle,

dy

dt
= f(y, t), (1)

where y = [x, v]T is the state vector of a vehicle, composed of position x and speed v,
and the vector function f represents the specific CFM. A wide class of follow-the-
leader CFMs that are used in microscopic simulators can be defined using a vehicle
acceleration function amic as

dxi
dt

= vi,

dvi
dt

= amic(si, vi, vi−1),

(2)

where i = 1, . . . , n is the index of actual vehicle from the fixed n number of vehicles,
xi denotes the position of the front bumper of vehicle i, vi its speed and si bumper to
bumper gap between the current vehicle and its leader (for the first vehicle we have
s1 = ∞, otherwise si = xi−1 − xi − `i−1, where `i is the length of the i-th vehicle).
By convention, we assume that for the i-th vehicle, the vehicle i− 1 is the leader.

1.1. Intelligent driver model

In their recent article [1], Treiber and Kanagaraj compare different numerical inte-
gration schemes for intelligent driver model (IDM) [2]. The IDM is a time-continuous
car-following model for the simulation of freeway and urban traffic, developed in part
by the first author of [1]. The model assumes that drivers maintain certain minimal
time and space gap from their leading vehicle, and at the same time try to keep
their preferred speed and acceleration and deceleration profile. The model does not
work with an explicitly given reaction time of the driver, and typically it is assumed
that the driver reaction time is constant and equal to the step size of the underlying
numerical integration scheme.

The IDM acceleration function is given by

amic(si, vi, vi−1) = a

(
1−

(
vi
v0

)δ
−
(
s∗(vi, vi−1)

si

)2
)

(3)

with

s∗(vi, vi−1) = s0 + vi T +
vi(vi − vi−1)

2
√
ab

, (4)

where the model parameters are a, b – maximum safe acceleration and decelera-
tion, v0 – preferred speed, δ – acceleration exponent (typically equal to 4), and
s0, T – minimum space and time gap to the leader vehicle.
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2. Numerical methods

Similarly to the authors of [1] we will investigate four different integration schemes.
The first three are well-known numerical methods for integrating ODEs, namely

• explicit Euler method, defined as

k1 = f(y, t),

y(t+ h) = y + hk1,
(5)

• explicit trapezoidal rule (Heun’s method)

k1 = f(y, t), k2 = f(y + hk1, t+ h),

y(t+ h) = y +
h

2
(k1 + k2),

(6)

• and the standard fourth-order Runge-Kutta method (RK4)

k1 = f(y, t), k2 = f

(
y +

h

2
k1, t+

h

2

)
,

k3 = f

(
y +

h

2
k2, t+

h

2

)
, k4 = f(y + hk3, t+ h),

y(t+ h) = y +
h

6
(k1 + 2k2 + 2k3 + k4).

(7)

Besides the three standard approaches outlined above, the authors of [1] use an al-
ternative first-order integration scheme called ballistic update, which can be used only
in special cases where Eq. (1) represents Newtonian dynamic acceleration equations.
The rule can be interpreted as a mixed first-order, second-order update consisting of
an Euler update for the speeds, and a trapezoidal update for the positions,

y(t+ h) =

(
x(t+ h)
v(t+ h)

)
=

(
x
v

)
+ h

(
v

a(x,v)

)
+

1

2
h2

(
a(x,v)

0

)
, (8)

where the last term makes the difference between ballistic and Euler method. The
acceleration is computed only once per the time step, so the order of the method
stays the same as in the Euler method. The trapezoidal rule needs to calculate the
acceleration two times and the fourth order Runge-Kutta four times. For CFMs, cal-
culating the acceleration function is an essential part of their numerical complexity.

3. Comparing the numerical integration methods

In order to compare the performance of integration schemes introduced in Sec-
tion 2 we need to have a reference solution of the studied problem. For all the
schemes, both decreasing the time step and increasing the method order should
lead to more accurate results at the price of higher computational demands. We
will therefore evaluate the difference to the reference solution as a function of the
computational effort that was spent at obtaining the tested solution.
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3.1. Reference solution

The reference solution of a simulation involving IDM cannot be obtained an-
alytically, except for trivial cases without vehicle interaction. We will follow the
argumentation of the original paper and generate a reference solution for simulation
scenarios using RK4 and time step href = 10−4 s. The global discretisation error will
be evaluated for speeds of a single vehicle as an average of local absolute errors,

ε =
∥∥vnum

i − vref
i

∥∥ =
1

m

m∑
j=1

|vnum
i (jh)− vref

i (jh)|, (9)

where vnum
i (jh) is the speed of the i-th vehicle at time t = jh and vref

i (jh) is the
reference solution for the same vehicle at the same time step.

3.2. Numerical complexity

The computational demands of a given integration scheme can be expressed in
terms of numerical complexity as

C =
p

h
, (10)

where p denotes the number of evaluations of the acceleration function for one step of
the integration scheme (for Euler method and ballistic update p = 1, for trapezoidal
rule p = 2, for RK4 we have p = 4) and h is the time step.

4. Implementation details

Reference [1] contains almost complete information needed to re-implement the
original experiments of the authors. We will now briefly overview the important
parts, adding one detail that has been omitted from the original paper.

4.1. Initial and boundary conditions

For the original (synthetic) simulation scenarios the following conditions hold:
At time 0 s all vehicles are stopped, vi(0) = 0, and their positions are x1(0) = 0,
∀i > 1 : xi(0) = xi−1(0)− `i−1 − si. Furthermore, a boundary condition for the first
vehicle acceleration is given – Treiber and Kanagaraj assume free-flow conditions for
the first vehicle,

a1(v1, t) = afree(v1) = amic(∞, v1, v1). (11)

These conditions lead to an autonomous ODE.

For the real world scenario we have vehicles that are entering the simulation at
externally prescribed time instants τi, and hence we have vi(τi) = v0,i and xi(τi) = 0.
Special care has to be taken to keep the gap between the entered vehicle and its
leader large enough.
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5. Heuristics for stopping vehicles

The discussed integration schemes assume smooth f . Due to finite update times,
all equations will lead to negative speeds in cases where the vehicle stops between the
updates. The authors of [1] suggested the following heuristics to estimate the stop-
ping position directly: when the computed speed after the final step of integration
scheme is negative, the position of the stopped vehicle is determined by a variant of
the ballistic rule instead of the originally calculated position:

xi(t+ h̃) = xi(t)−
v2
i (t)

2amic
i (t)

. (12)

Here, h̃ could be h or h/2 (for the RK4 method). In addition, the speed of the
vehicle is reset to zero.

5.1. Position of the leader

Except for the Euler method and the ballistic update, the integration of IDM for
the current vehicle requires the knowledge of the leader vehicle state ylead(t+h) (for
the computation of k2 of trapezoidal rule and k4 of RK4) and, for RK4, also the
leader vehicle state at the intermediate point ylead(t+ h/2), which has to be used to
correctly compute values of k2 and k3. While the former value can be easily obtained
by performing the integration step on an ordered sequence of vehicles, thus updating
the state of the leader vehicle before updating the state of its follower, the original
paper does not mention how the state ylead(t+ h/2) is computed.

We have tested simple linear approximation, trapezoidal rule, and different com-
binations of intermediate RK4 states. Our results, presented in Section 2, indicate
that in [1] the state at the intermediate point is computed as

ylead

(
t+

h

2

)
= ylead(t) +

h

2
(k2 + k3) . (13)

5.2. Parallelisation

Note that while the Euler and the ballistic updates may be executed on arbitrary
vehicle regardless of the updated state of its leader, the ordering condition for trape-
zoidal and RK4 update effectively prevents vehicle-level parallelisation. However,
vehicles within independent lanes may be still updated in parallel.

6. Results

To verify the results presented in [1] and to compare these results with real-world
measured data, a simple custom micro-simulator has been created in Python pro-
gramming language, using standard extension libraries NumPy, SciPy and Matplotlib.
The simulator is able to simulate a single lane road equipped with vehicle counting
detectors and provide floating car data (speed, position, acceleration, and gap-to-
-leader) for all simulated vehicles.
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Figure 1: Global discretisation error of the 10-th vehicle speed as a function of the
numerical complexity for the four update schemes. As with the original paper [1],
the simulation interval has been limited to [0, 60] seconds.

6.1. Original scenario

In order to verify the implemented integration schemes, we first replicated the
original synthetic start-stop scenario of Treiber and Kanagaraj. We started with
20 identical vehicles queuing at the red light. At time t = 0, traffic light turned
green and the queued cars started moving for 670 metres, where the next signalized
intersection was located and the cars needed to stop again. We ran the simulation
of this scenario for all four numerical integration schemes mentioned in Section 2 for
16 different integration steps ranging from 2.4 s to 0.002 s. If implemented correctly,
we would expect to observe results similar to that of [1], with RK4 being the most
precise of the tested methods in terms of the L1 global error metric (9). This is
indeed true in case that the intermediate point in RK4 scheme is computed using
Eq. (13), see Fig. 1.

6.2. Real world data

In order to test the results on real world data, the same data set from the southern
leg of the Prague Ring (SOKP) as in Ref. [4] has been used. From the database of
weekday measurements, two working days have been selected. One day of detector
measurements for passenger vehicles from SOKP gantry at km 20.1 has been used
to calibrate IDM parameters. Then, another working day has been used as an input
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Figure 2: Global error of the vehicle count for the four update schemes with respect
to real measurements.

to vehicle generator and the simulation result has been compared to data measured
at km 18.7. The fixed step h = 0.5 s (that roughly corresponds to average driver
reaction time) has been used for all four integration schemes. As we can see in Fig. 2,
results for the different integration schemes are almost identical. When we compute
different error metrics, the similarity of the results becomes even more obvious – see
Tab. 1.

We believe these results confirm the fact the even a well-accepted model as the
IDM is only an approximation of the reality (which is to greater or lesser extent
true for all mathematical models). The traffic flow is inherently a phenomenon with
a very strong stochastic component, and as such it is very difficult to model – even
if we would be able to replicate the properties of every vehicle with a minimal error,
it is impossible to predict the behaviour of a human driving the vehicle.

7. Conclusions

Generally, when integrating ODEs, the fourth-order Runge–Kutta (RK4) method
is the de-facto standard and other methods are rarely used. However, this is not the
case for integrating CFMs in traffic simulations – here, Euler’s method is still the
most widespread one [1]. One of the reasons is given by the authors of [1]: for typical
traffic-related situations, RK4 cannot reach its theoretical consistency order p = 4
as the smoothness conditions for the integrated function are rarely satisfied.
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Method MSE max |∆| # hits

Euler 20.88 20 259
Ballistic 19.73 19 258

Trapezoid 20.19 22 262
RK4 20.67 21 261

Table 1: Comparison on real world data. MSE stands for mean squared error,
max |∆| is the maximum difference from the reference value, and # hits column
contains the count of occurrences where the simulation results were within ±1 vehicle
from the reference.

Inspired by this observation, which was made using synthetic experiments, we
have used the same group of integration schemes to simulate real traffic between
two measurement points on a highway. Our result show that due to the stochastic
nature of traffic, the performance of all integration schemes is almost identical, sug-
gesting that using Euler’s method (or ballistic update) can be justified by its low
computational demands.

The reader could correctly object that selecting only a single step size, namely
h = 0.5 s, for comparison, may be unfair to higher order methods as their benefits
would become more pronounced for larger h. Unfortunately, in CFM context, h also
often reflects the average reaction time of a driver and its choice is therefore limited
to values between circa 0.5 and 1 second.

The Python source code of our experiments is available from the GitHub of the
fist author at http://github.com/jprk/panm18.
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partial differential equation requires numerical integration of oscillating func-
tions. This integration could be performed, instead of classic techniques, also
by the Levin method with some modifications. This paper shortly describes
both the Trefftz method and the Levin method with its modification.
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1. Introduction

The Trefftz finite element method is a method for solving boundary value prob-

lems applied already in the 1970. The integrals of oscillating functions often appear

during the solving procedure. These integrals can be calculated using the modified

Levin method. In this paper we briefly introduce the Trefftz and Levin methods

with its necessary modification to be applicable to the Trefftz finite element.

2. Trefftz finite element method

Trefftz finite elements are finite elements based on the usage of the auxiliary

unknown defined on the edges (faces) of elements that links together the primary

unknown defined on each element. This method is described in [1] or [5]. Description

of implementation aspect is in [6].

Here, let us briefly present the method on the following model problem. Consider

that we are seeking to find the solution of the Laplace equation in a domain Ω ⊂ R2

endowed with the boundary conditions

∆u = 0 in Ω,

u = ū on Γu, (1)

∂u

∂n
= q̄ on Γq,

where ū, q̄ are known functions, and n is the normal to the boundary Γ = Γu ∩ Γq.
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Let the domain Ω be divided into elements; and over each element Ωe, we assume

the function u in the form

u =

M
∑

j=1

cj Nj on element Ωe,

where cj are unknown constants and Nj are known functions to be chosen such that

∆Nj = 0 in element Ωe, for j = 1, 2, . . . ,M.

It can be shown that this equation is satisfied by any of the following functions:

1, r cos θ, r sin θ, . . . , rm cosmθ, rm sinmθ, . . . , (2)

where r and θ are a pair of polar coordinates.

Let us introduce an auxiliary function ũ defined on element boundary only:

ũ =

N
∑

i=1

di Ñi,

where di stands for nodal displacement and Ñi are standard shape functions.

Let us denote q = ∂u
∂n

and q1 = ∂u
∂x1

, q2 = ∂u
∂x2

. Following the approach in [5], let

us introduce the functional Ψe,

Ψe =
1

2

∫

Ωe

q21 + q22 dΩ−

∫

Γe

q ũ dΓ +

∫

Γeq

q̄ ũ dΓ =

1

2

∫

Γe

q u dΓ−

∫

Γe

q ũ dΓ +

∫

Γeq

q̄ ũ dΓ, (3)

where Γe is the boundary of the element Ωe and Γeq = Γe ∩ Γq. The minimalization

of the variational functional Ψe for the all elements provides the solution of (1).

3. Levin method

The Levin method is an effective way for the numerical integration of rapidly

oscillating functions. It is described in [2] for one- and two-dimensional integrals;

more details, numerical examples, and error analysis are provided in [3], [4].

Let us briefly introduce this method. The integration problem is transformed into

an ordinary differential equation problem to be numerically solved by for example

the collocation method.

We consider integrals of the form

I =

∫ b

a

f t · w dx, (4)
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where f is a vector of smooth and non-oscillating functions, f(x)=(f1(x),. . . ,fm(x))
t,

w is a vector of oscillating functions, w(x) = (w1(x), w2(x), . . . wm(x))
t, and a, b are

real and finite. We also assume that w satisfies

w′(x) = A(x)w(x),

where A is an m×m matrix of non-oscillating functions.

We would like to find the vector p(x) = (p1(x), p2(x), . . . pm(x))
t such that

(pt · w)′ = f t · w.

Subsequently,

I =

∫ b

a

(

pt · w
)′
dx =

∫ b

a

(p′)t · w + pt · w′ dx =

∫ b

a

(p′)t · w + pt · Aw dx =

∫ b

a

(

p′ + At p
)t
· w dx,

Hence, the vector p should satisfy

p′ + At p = f.

Then, the integral is computed as

∫ b

a

f t · w dx = pt(b) · w(b)− pt(a) · w(a). (5)

Example As an example, let us compute the integral

∫ 2π

0

x2 cos (rx) dx =

∫ 2π

0

(

x2, 0
)

· (cos (rx), sin (rx)) dx,

where r∈
⊙

N. In the notation used above, f(x)=(x2, 0)
t
and w(x)=(cos (rx), sin (rx))

t
.

Then,

w′(x) =

[

cos (rx)

sin (rx)

]′

=

[

0 −r

r 0

] [

cos (rx)

sin (rx)

]

= A(x)w(x).

We are looking for the vector p = (p1, p2) which satisfies

p′1 + rp2 = x2,

p′2 − rp1 = 0.

The general solutions are

p1(x) = C1 cos (rx) + C2 sin (rx) +
2x

r2
, (6)

p2(x) = C1 sin (rx)− C2 cos (rx) +
x2

r
−

2

r3
. (7)
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The formula (5) is valid for any solution of (6). We choose the solution for which

C1 = C2 = 0. Hence,

∫ 2π

0

x2 cos (rx) dx =

[(

2x

r2
,
x2

r
−

2

r3

)

· (cos (rx), sin (rx))t
]2π

0

=
4π

r2
.

4. Integration in the Trefftz method

Using functions (2) in functional (3) leads to line integrals of oscillating functions.

It depends on the implementation, but it is usual that only values of the integrated

function are accessible. In this content, it is obvious that success of Levin method

relies on rewriting w′ as Aw. In this situation, namely, when only values of w are

known, finding matrix A could be a problem.

The oscillating function w can be approximated by the trigonometric interpola-

tion polynomial

w(x)
.
= a0 +

n
∑

i=1

(ai cos (αix) + bi sin (αix)) ,

where the coefficients a0, ai, bi, i = 1 . . .N , can be effectively computed by the dis-

crete fast Fourier transform.

Then, the integral of the form (4) can be approximated by

I
.
=

∫ b

a

f a0 +

n
∑

i=1

f (ai cos (αix) + bi sin (αix)) dx =

a0

∫ b

a

f dx+

∫ b

a

n
∑

i=1

f (ai cos (αix) + bi sin (αix)) dx.

In this form, the integral is suitable for the Levin method.
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Abstract: Rock bolts as construction elements are often used in underground
civil engineering projects. This work deals with their numerical modelling.
Aydan special finite elements for the description of rock bolts and hexahedral
quadratic finite elements for the description of rock massif were used. A code
for the computation of stiffness matrices and right hand sides of these elements
was developed. The code was tested on several simple test examples and their
results were compared with the analytical solution. Stresses in a rock massif
in the surrounding of an excavation reinforced by rock bolts were computed.
The results show that the use of rock bolts can reduce the areas of maximal
mechanical stress in the vicinity of excavations.

Keywords: rock bolt reinforcement, mathematical modelling, the finite ele-
ment method
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1. Introduction

Rock bolts as reinforcing construction elements are often used in underground
civil engineering projects (Fig. 1).

Several special finite elements for rock bolt modelling were developed. The most
widely used element was presented by Aydan [1]. The so-called Aydan element
consists of two groups of nodes. The first group represents a rod sub-element, which
is a simple model of a steel bar. The remaining nodes are located on the interface of
cement grout and rock massif. The connection of the bar with the surrounding rock
by cement grout is represented by the joint action of both groups of nodes. This
paper is focused on the six-node type of the Aydan element with quadratic shape
functions, which is used in 3D models.

The computation of the stiffness matrix of this element and its application in
the 3D model of two tunnels reinforced by rock bolts is described. The rock bolts
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Figure 1: Rock bolts.

Figure 2: Classical formulation of the linear elasticity problem.

are fastened by cement grout along their full length. The geometry of the model
corresponds to the characteristic cross section of the Brusnice tunnel that is a part
of the Blanka tunnel complex, an underground part of the Prague City Ring Road.

2. Classical formulation of a linear elasticity problem

Differential equations describe real physical processes inside the material. The
classical formulation of the linear elasticity problem is described in [3], for instance.

We consider a linear elastic body that occupies a domain Ω (Fig. 2). We look
for the vector of displacements u = (u1, u2, u3) satisfying Lamé equations in the
domain Ω, see Equations (1),

(λ+ µ)
3∑
j=1

∂2uj
∂xi∂xj

+
3∑
j=1

∂2ui
∂x2

j

+ Fi = 0, i = 1, 2, 3 (1)

where λ, µ are the Lamé coefficients, xi and Fi stand for the i-th coordinate com-
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Figure 3: Finite element discretization of the rock bolt reinforcement without and
with a special rock bolt element.

ponent and volumetric load component, respectively. Displacements are prescribed
on Γu and the stress vector is given on Γτ (see Fig. 2), that is,

ui = 0, i = 1, 2, 3 on Γu (2)
3∑
j=1

τijνj = 0, i = 1, 2, 3 on Γτ (3)

where τ = (τij) is the stress tensor and ν = (ν1, ν2, ν3) is the outward unit normal
vector to the boundary of Ω.

We prescribed zero displacements on the bottom, on the sides and on the front
and back faces of the domain Ω, see Equation (2). The zero stress vector is prescribed
on the excavation surface and on the top surface of the body Ω, see Equation (3).

3. The finite element method

3.1. Rock bolt element of the Aydan type

Because a detailed discretization of the rock bolt reinforcement including the steel
bar and fastening material needs a generation of a complicated finite element mesh,
special finite elements were derived, see Fig. 3.

The Aydan rock bolt element with quadratic shape functions has six nodes
(Fig. 4). Three of them represent the steel rod (nodes 1, 2 and 3). The others are
located on the interface between the fastening material and the surrounding rock.
The rock bolt element is connected to the elements, which represent rock massif, by
nodes 4, 5 and 6 (Fig. 4). The connection of the bar with surrounding rock massif
by cement grout is represented by the joint action of both groups of the nodes.

Several simplifications were considered during the derivation of the stiffness ma-
trix of the Aydan element. The steel rod and body formed by the fastening material
are assumed axially symmetric and coaxial bodies. Both mentioned materials are
considered homogeneous, isotropic and linear elastic. Therefore the dependence be-
tween stresses and deformations of these materials is described by linear Hooke’s
law. The radius of the rock bolt is negligible with respect to its length. Therefore,
nodes 1 and 4 have identical coordinates. The same is valid for nodes 2 and 5 or 3
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Figure 4: Aydan six-node rock bolt element.

and 6. However, the assumption of negligible radius cannot be applied to the process
of derivation of the stiffness matrix. Only three types of deformations of the Aydan
element are included in the computation:

• relative longitudinal deformation of the steel bar caused by different axial dis-
placements of nodes 1, 2 and 3,

• relative cross shear deformation of the steel bar caused by different radial dis-
placements of nodes 1, 2 and 3,

• relative longitudinal shear deformation of fastening material caused by different
axial displacements of nodes 1, 2 and 3 with respect to nodes 4, 5 and 6,

• relative cross deformation of fastening material caused by different radial dis-
placements of nodes 1, 2 and 3 with respect to nodes 4, 5 and 6,

To define the element stiffness matrix, we introduce matrices D and B. In detail,

D =


Et 0 0 0 0 0
0 Gt 0 0 0 0
0 0 Gt 0 0 0
0 0 0 Gz 0 0
0 0 0 0 Dz 0
0 0 0 0 0 Dz

 .

Here, Et is Young’s modulus of steel, Gt and GZ is the shear modulus of steel and
fastening material, DZ is Young’s modulus of the fastening material multiplied by
two. The multiplicative factor of two reflects the effects of enlacement of the cement
grout by the rock massif.

Next,

B =

[
B1 B2

B3 −B3

]
,
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where

B1 =

 N ′1 0 0 N ′2 0 0 N ′3 0 0
0 N ′1 0 0 N ′2 0 0 N ′3 0
0 0 N ′1 0 0 N ′2 0 0 N ′3

 ,
B3 =

 cN1 0 0 cN2 0 0 cN3 0 0
0 N1 0 0 N2 0 0 N3 0
0 0 N1 0 0 N2 0 0 N3

 ,
B2 is a zero matrix, the prime denotes the derivative with respect to ξ (see (4)), and
c = 2/((rh + rt)l, where l = ln(rh/rt) and rt, rh are the respective diameters of the
steel bar and the rock bolt borehole, the latter is equivalent to the diameter of the
body formed by the fastening material.

The constant c was derived in [1]. Shape functions are quadratic:

N1 = 0.5 · ξ · (ξ − 1),

N2 = 1− ξ2, (4)

N3 = 0.5 · ξ · (ξ + 1),

where ξ ∈ [−1; 1] is the local coordinate. The stiffness matrix of the rock bolt
referential element is

K =

∫ 1

−1

BTDB dξ,

where BT = is the transpose of B.
Constant values of the displacements across the cross section of the rock bolt are

considered. Therefore, the volume integral is reduced to one-dimensional integral
with the integration area of the length of the rock bolt element. Three-point Gaussian
numerical integration was used for the calculation of the one-dimensional integral.

Finally, it is necessary to transform the stiffness matrix from local to global
system of coordinates.

3.2. Hexahedron - rock element for 3D model

Rock massif is represented by hexahedral elements with 20 nodes [2] in 3D model.
Eight nodes are located in vertices, remaining twelve are located in the centres of
edges. Gaussian numerical integration of third order was used for calculating stiffness
matrices and right hand sides.

4. Test example and comparison with analytical solution

An analytical expression for stresses in excavation is known only for several simple
cases. For a circular excavation without rock bolts, such solution is described in [6].
For a circular excavation with rock bolts, an analytical solution is known only if an
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Figure 5: Test example consisting of two bricks and eight Aydan elements (left), and
shape of excavation and spacing of rock bolts (right).

averaging of the rock bolt and rock material properties is introduced, see [4]. There-
fore we studied several simple problems where the analytical solution can easily be
derived. One of the simple problems used for the verification of our implementation
of the Aydan rock bolt element is presented below, see Fig. 5.

This example consists of two bricks (elements 1 and 2) of 1× 2× 1 m reinforced
by eight Aydan elements (elements 3 - 10). Zero displacements are prescribed at
the base of the body, the other displacements are restricted to the y−direction. The
following material properties and loads were considered:

Erock = 500 MPa, νrock = 0.2,

Esteel = 210 GPa, νsteel = 0.3,

Egrout = 30 GPa, νgrout = 0.2, fy = −25 kN ·m−3.

Analytical solution was easy to compute from the equation

d

dy

(
EA

du

dy

)
+ fy = 0,

where A denotes the area of the cross-section. The stiffness of the cross-section was
defined by the sum of stiffnesses of the rock bolts and the rock. Results for both
numerical and analytical solution are summarized in Table 1. The shape of the
deformed body is also depicted in Figure 5.

5. Model of rock bolt reinforcement

The geometry of the model corresponds to the characteristic cross section of the
two-tube Brusnice tunnel, which is a part of the Blanka tunnel complex. Two three
lane motorways are situated inside of these two tunnels. All data necessary for the
model creation were taken from [7].
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Solution Displacement of rock at y = 1 m Displacement of rock at y = 2 m
Numerical from −0.341× 10−4 to −0.402× 10−4 m from −0.468× 10−4 to −0.532× 10−4 m
Analytical −0.383× 10−4 m −0.511× 10−4 m

Table 1: Comparison of numerical and analytical solution at y = 1 and y = 2 m.

5.1. Input data

Each of the two excavations is composed of four types of circular arcs, has a height
of 12.8 metres, a width of 16.6 metres, and an area of almost 180.0 square metres.
Twelve rock bolts six metres long are placed in the tunnel arch. The angle between
two adjacent rock bolts varies from 18o to 23o (Fig. 5 right).

The distance between parallel planes containing rock bolt bundles in the direction
of the axis of the tunnel is 1.25 m. All 24 rock bolts are located in the central plane
of the model. Therefore, thickness of the model periodic segment is considered
also 1.25 m. Each rock bolt is, in fact, a steel bar with a radius of 2.0 cm that
is fastened by cement grout along its full length in the borehole with a diameter
of 6.0 cm.

The width of the whole model is 150.0 metres and the height varies from 51.4 me-
tres up to 62.6 metres. The thickness of a rock cover is 13.3 metres for the left
excavation and 12.8 metres for the right one (Fig. 6 top). For this model we consider
boundary conditions that were already described in the classical formulation of the
problem. The rock massif is formed by mildly eroded slates, which are very common
in the surrounding of the tunnel. Steel and cement grout are another materials con-
tained in the model. It is necessary to prescribe Young’s modulus, Poisson’s ratio
and specific density for all the materials,

Erock = 400 MPa, νrock = 0.28, ρrock = 2450 kg ·m−3,

Esteel = 210 GPa, νsteel = 0.3,

Egrout = 30 GPa, νgrout = 0.2.

In the development of the finite element mesh, a circular zone around the excavation
was created in order to properly couple the Aydan elements with the brick elements
(Fig. 6 bottom). The mesh consists of 61,368 hexahedrons and 360 rock bolt elements
and it is represented by 297,931 nodes. The mesh is composed of four layers of
elements with the same thickness in the direction of the axis of the tunnel.

5.2. Results

We considered two studies. In the first case, we assumed the excavations with-
out any rock bolts. Then the model with rock bolts was used. An influence of
rock bolts is recognizable only in the close vicinity of the excavations, therefore we
analyse the results only in this detailed area, especially in the surrounding of the
left excavation. Stress σyy in the vertical direction and stress σxx in the horizontal
direction is depicted (Fig. 7). The influence of rock bolts is most evident, if the
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Figure 6: Geometry of the whole model (top), and finite element mesh including the
position of rock bolts (bottom).

direction of their axis is similar to the direction of the considered stress. Areas with
large stress are redistributed into several smaller areas, although the stress need not
decrease (Fig. 8).

Rock bolts placed above the excavation have greater impact on the vertical stress
and rock bolts placed on the sides have greater impact on the horizontal stress.
Stresses in the area above the excavation are relatively low, so rock bolts cannot
achieve full activation here. Presence of rock bolts is most evident in the horizontal
stress and mainly on the sides of the excavations (Fig. 9). The location of the rock
bolts is clearly apparent from the local stress anomalies.

6. Conclusion

The influence of rock bolts is recognizable from our results. Rock bolts reduce
local extreme values of stresses. In general, they mildly raise stresses in the radial
direction and they help to create rock arch and improve the stability of the excava-
tion. When using rock bolts, areas with large stress are redistributed into several
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Figure 7: Stress σxx in the surrounding of the left excavation without rock bolts
(left) and with rock bolts (right).

Figure 8: Stress σxx along the upper part of the excavation arc – without rock bolts
(dashed line) and with rock bolts (solid line).

smaller areas, although the stress need not decrease. Described influence corresponds
to theoretical knowledge of the functioning of rock bolt reinforcement. It is possible
to combine special rock bolt elements with other types of elements with appropriate
shape functions and this is the way how to create complex numerical models of rein-
forced excavations. Due to the simplicity of the rock bolt element it is quite easy to
create its different modifications with various shape functions. These modifications
were described by Aydan [1], Chao [5] or Runt [8]. The resulting elements can be
used in both 2D and 3D models.
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Figure 9: Stress σxx inside the excavation.
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Abstract: There are two grounds the spline theory stems from – the algebraic
one (where splines are understood as piecewise smooth functions satisfying
some continuity conditions) and the variational one (where splines are obtained
via minimization of some quadratic functionals with constraints). We use the
general variational approach called smooth interpolation introduced by Talmi
and Gilat and show that it covers not only the cubic spline and its 2D and
3D analogues but also the well known tension spline (called also spline with
tension). We present the results of a 1D numerical example that characterize
some properties of the tension spline.
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1. Introduction

The minimum curvature approach to interpolation, which produces e.g. cubic
splines, usually provides a visually nice smooth curve or surface. However, in some
cases the method can create artificial oscillations. A remedy proposed by Schwei-
kert [4] is known as tension spline. The functional minimized includes the first
derivative term in addition to the second derivative term.

The smooth approximation [8] is an approach to data interpolating or data fitting
that employs the variational formulation of the problem in a normed space with con-
straints representing the approximation conditions. The cubic spline interpolation
in 1D is also known to be the approximation of this kind.

For the cubic spline, the objective is to minimize the L2 norm of the second
derivative of the approximating function. A more complex criterion then is to mini-
mize, with some weights chosen, the L2 norms of several (or possibly all) derivatives
of a sufficiently smooth approximating function. In the paper, we are concerned
with the tension spline constructed by means of the smooth approximation theory
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(cf. also [3]), i.e. with the exact interpolation of the data at nodes and, at the same
time, with the smoothness of the interpolating curve and its first derivative.

For the sake of simplicity, we are mostly concerned with the 1D case in the paper.
Assuming the approach of [8] and [5], we introduce the problem to be solved and
the tools necessary to this aim in Sec. 3. We also present the general existence
theorem for smooth interpolation proven in [5]. We use the basis system exp(ikx) of
exponential functions of pure imaginary argument for smooth interpolation problems
in Sec. 4. In Sec. 5 we investigate some properties of this basis suitable for preserving
the smoothness of the interpolation and for generating the tension spline in 1D, 2D,
and 3D. We also present a 1D numerical example and discuss it to illustrate some
properties of smooth interpolation in Sec. 6.

2. Problem of data interpolation

Basic notation and fundamental statements are presented, e.g., in [6]. Let
us have a finite number N of (complex, in general) measured (sampled) values
f1, f2, . . . , fN ∈ C obtained at N nodes X1, X2, . . . , XN ∈ Rn. The nodes are as-
sumed to be mutually distinct. We are usually interested also in the intermediate
values corresponding to other points in some domain. Assume that fj = f(Xj) are
measured values of some continuous function f while z is an approximating function
to be constructed. The dimension n of the independent variable can be arbitrary.

Definition 1 (Interpolation). The interpolating function (interpolant) z is con-
structed to fulfil the interpolation conditions

z(Xj) = fj, j = 1, . . . , N. (1)

Various additional conditions can be considered, e.g. minimization of some func-
tionals applied to z.

The problem of data interpolation does not have a unique solution. The prop-
erty (1) of the interpolating function is uniquely formulated by mathematical means
but there are also requirements on the subjective perception of the behavior of the
approximating curve or surface between nodes that can hardly be formalized.

The general problem of smooth approximation (smooth curve fitting, data smooth-
ing), where the interpolation condition (1) is not applied, is treated in more detail
e.g. in [5], [8].

For the sake of simplicity we now put n = 1 and assume that X1, X2, . . . , XN ∈ Ω,
where either Ω = [a, b] is a finite interval or Ω = (−∞,∞). We will turn back to
general n ≥ 1 in Sec. 5.

3. Smooth interpolation

We introduce an inner product space to formulate the additional constraints in
the problem of smooth approximation [6], [8]. Let W̃ be a linear vector space of
complex valued functions g continuous together with their derivatives of all orders
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on the interval Ω. Let {Bl}∞l=0 be a sequence of nonnegative numbers and L the

smallest nonnegative integer such that BL > 0 while Bl = 0 for l < L. For g, h ∈ W̃ ,
put

(g, h)L =
∞∑
l=0

Bl

∫
Ω

g(l)(x)[h(l)(x)]∗ dx, (2)

|g|2L =
∞∑
l=0

Bl

∫
Ω

|g(l)(x)|2 dx, (3)

where ∗ denotes the complex conjugate.
If L = 0 (i.e. B0 > 0), consider functions g ∈ W̃ such that the value of |g|0

exists and is finite. Then (g, h)0 = (g, h) has the properties of inner product and the

expression |g|0 = ‖g‖ is norm in a normed space W0 = W̃ .

Let L > 0. Consider again functions g ∈ W̃ such that the value of |g|L exists and

is finite. Let PL−1 ⊂ W̃ be the subspace whose basis {ϕp} consists of monomials

ϕp(x) = xp−1, p = 1, . . . , L.

Then (ϕp, ϕq)L = 0 and |ϕp|L = 0 for p, q = 1, . . . , L. Using (2) and (3), we con-

struct the quotient space W̃/PL−1 whose zero class is the subspace PL−1. Finally,
considering (·, ·)L and | · |L in every equivalence class, we see that they represent the

inner product and norm in a normed space WL = W̃/PL−1 [6].
WL is the normed space where we minimize functionals and measure the smooth-

ness of the interpolation. For an arbitrary L ≥ 0, choose a basis system of functions
{gk} ⊂ WL, k = 1, 2, . . . , that is complete and orthogonal (in the inner product
in WL), i.e., (gk, gm)L = 0 for k 6= m, (gk, gk)L = |gk|2L > 0. If L > 0 then it is,
moreover, (ϕp, gk)L = 0 for p = 1, . . . , L, k = 1, 2, . . . . The set {ϕp} is empty for
L = 0.

Definition 2 (Smooth data interpolation). The problem of smooth data interpola-
tion [8] consists in finding the coefficients Ak and ap of the interpolant

z(x) =
∞∑
k=1

Akgk(x) +
L∑
p=1

apϕp(x) (4)

such that
z(Xj) = fj, j = 1, . . . , N, (5)

and
the quantity |z|2L attains its minimum. (6)

Apparently, the infinite sum in (4) is inconvenient for practical computation.
Therefore, we introduce the generating function

RL(x, y) =
∞∑
k=1

gk(x)g∗k(y)

|gk|2L
. (7)
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We state in Theorem 1, which follows, that a finite linear combination of the values of
the generating function RL at particular nodes is used for the practical interpolation
instead of the infinite linear combination in (4). Further put

R = [RL(Xi, Xj)], i, j = 1, . . . , N,

where R is an N×N square Hermitian matrix, and if L > 0 then introduce an N×L
matrix

Φ = [ϕp(Xj)], j = 1, . . . , N, p = 1, . . . , L.

Theorem 1. Let Xi 6= Xj for all i 6= j. Assume that the generating function (7)
converges for all x, y ∈ Ω. If L > 0 let rank Φ = L. Then the problem of smooth
interpolation (4) to (6) has the unique solution

z(x) =
N∑
j=1

λjRL(x,Xj) +
L∑
p=1

apϕp(x), (8)

where the coefficients λj, j = 1, . . . , N , and ap, p = 1, . . . , L, are the unique solution
of a nonsingular system of N + L linear algebraic equations.

Proof. The proof is given in [5].

4. A particular basis function system

Recall that we have put n = 1. Let the function f to be approximated be
2π-periodic in [0, 2π]. We choose exponential functions of pure imaginary argument
for the periodic basis system {gk} in WL. The following theorem shows important
properties of the system.

Theorem 2. Let there be an integer s, s ≥ L, such that Bl = 0 for all l > s in WL.
The system of periodic exponential functions of pure imaginary argument

gk(x) = exp(−ikx), x ∈ [0, 2π], k = 0,±1,±2, . . . , (9)

is complete and orthogonal in WL.

Proof. The proof is given in [6].

The range of k implies a minor change in the notation introduced above. For the
basis system (9), notice that the generating function

RL(x, y) =
∞∑

k=−∞

gk(x)g∗k(y)

|gk|2L
=

∞∑
k=−∞

exp(−ik(x− y))

|gk|2L
(10)

is the Fourier series in L2(0, 2π) with the coefficients |gk|−2
L , where

|gk|2L = 2π
∞∑
l=L

Blk
2l (11)

according to (3).
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Let now the function f to be approximated be nonperiodic on (−∞,∞) and
f (l)(±∞) = 0 for all l ≥ 0. Let us define the generating function RL(x, y) as the
Fourier transform of the function |gk|−2

L of continuous variable k,

RL(x, y) =

∫ ∞
−∞

exp(−ik(x− y))

|gk|2L
dk, (12)

if the integral exists. Using the effect of transition from the Fourier series (10)
with the coefficients |gk|−2

L to the Fourier transform (12) of the function |gk|−2
L of

continuous variable k (cf., e.g., [6]), we have transformed the basis functions, enriched
their spectrum, and released the requirement of periodicity of f . Moreover, if the
integral (12) does not exist in the usual sense, in many instances we can calculate
RL(x, y) as the Fourier transform F of the generalized function |gk|−2

L of k.

5. Tension spline

To finish the definition of the inner product and norm (2), (3) in a particular
space WL we now choose a particular sequence {Bl} and set, therefore, the mini-
mization properties of the smooth interpolant. Let us thus put (cf. [3])

Bl = 0 for all l with the exception of B1 = α2, α > 0, and B2 = 1. (13)

It means that we have L = 1 and minimize the L2 norm of the first derivative (char-
acterizing oscillations) multiplied by α2 plus the L2 norm of the second derivative
(characterizing the curvature) of the interpolant (4) in the form (8), i.e.

z(x) =
N∑
j=1

λjR1(x,Xj) + a1. (14)

We get
|gk|21 = 2π(α2k2 + k4)

from (11). Let r = |x− y|. We arrive at

R1(x, y) = F
(

1

2πk2(α2 + k2)

)
=

1

2π
F
(

1

α2k2
− 1

α2(k2 + α2)

)
= − 1

2α3
(αr + exp(−αr)), (15)

where F denotes the Fourier transform of a generalized function (see [2], p. 375,
formula 14 and p. 377, formula 29; and [1], formula 8.469.3), cf. [7]. We see that this
version of smooth approximation is equivalent to the tension spline interpolation [4]
but introduced in a way different from [3].

For dimension n > 1, l is a multiindex, k, x, y are vectors, and the formula (14)
remains the same.
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If n = 2 then |gk|21 = 4π2(α2(k2
1 + k2

2) + (k2
1 + k2

2)2) and we arrive at

R1(x, y) = F
(

1

4π2(α2(k2
1 + k2

2) + (k2
1 + k2

2)2)

)
= − 1

2πα2
(ln(1

2
αr)−K0(αr) + C),

where C is a constant that can be included into a1 in (14) and K0 is the modified
Bessel function of the second kind (see [2], p. 382, formula 13 and p. 380, formula 5).

Moreover, if n = 3 then |gk|21 = 8π3(α2(k2
1 +k2

2 +k2
3)+(k2

1 +k2
2 +k2

3)2). We finally
have

R1(x, y) = F
(

1

8π3(α2(k2
1 + k2

2 + k2
3) + (k2

1 + k2
2 + k2

3)2)

)
=

1

4πα2

1− exp(−αr)
r

(see [2], p. 382, formula 13 and p. 380, formula 1).
At r = 0, the above functions R1(x, y) are defined as a limit for r → 0.
There are further practical examples of smooth interpolation where the inte-

gral (12) that defines the generating function can be calculated with the help of
the Fourier transform. It is easy to show that one of them is the 1D cubic spline
interpolation and its analogues in 2D and 3D [6].

6. Computational comparison

We present results of a simple numerical experiment with the tension spline for
n = 1. We employ the complete and orthogonal system (9) and the sequence (13)
to introduce the space W1. We use the interpolant (14), where R1 is given by (15).
The function to be interpolated is

f(x) = 8− 2

1 + 16x2
. (16)

Apparently, it has “almost a negative pole” at x = 0. The tension spline interpolation
of the function (16) has been constructed in several equidistant grids of N nodes
on [−1, 1] and for several values of α2 including also α2 = 0, i.e. the cubic spline.

Some of the results of interpolation are in Fig. 1. We put N = 9 and compare
tension splines with α2 = 0, α2 = 1 000, and α2 = 10 000. The interpolants are in
the upper part of the figure, their first derivatives in the lower part along the x axis.

We see that the tension splines do not differ substantially from each other but
their derivatives are very unlike. The derivative of the cubic spline is a smooth
function while the derivative of the tension spline with α2 = 10 000 is similar to
a piecewise constant function with smooth changes between the constant levels. This
corresponds to the behavior of the tension spline if examined in a different scale: it
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Figure 1: N = 9. The horizontal axis: independent variable, the vertical axis:
interpolant (in the upper part of the figure) and its derivative (in the lower part).
Cubic spline (tension α2 = 0): solid line, tension spline (α2 = 1 000): dashed line,
tension spline (α2 = 10 000): dotted line.

resembles a piecewise linear curve but it is smooth, not sharp-cornered also at nodes,
i.e. its derivative is continuous.

A proper choice of the parameter α2 can provide a compromise interpolation
solution with both tension spline and its derivative so smooth that they give a good,
pleasing subjective impression.

7. Conclusion

We have shown that the generating function for the tension spline interpolation
can be obtained by means of the Fourier transform of generalized functions. To
this end we have employed the integral definition (12) of the generating function
and some known formulae for the Fourier transform. The Fourier transform can be
successfully used to determine the generating function also in several other cases
including n = 2 and n = 3. Moreover, the same approach can be applied to smooth
approximation where no interpolation conditions (1) are prescribed. The example in
Fig. 1 is a very simple illustration of the 1D smooth interpolation case.
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Abstract: This contribution summarizes an implicit constitutive solution
scheme of the elastoplastic problem containing the Mohr-Coulomb yield cri-
terion, a nonassociative flow rule, and a nonlinear isotropic hardening. The
presented scheme builds upon the subdifferential formulation of the flow rule
leading to several improvements. Mainly, it is possible to detect a position
of the unknown stress tensor on the Mohr-Coulomb pyramid without blind
guesswork. Further, a simplified construction of the consistent tangent opera-
tor is introduced. The presented results are important for an efficient solution
of incremental boundary value elastoplastic problems.
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1. Introduction

We focus on a solution of an elastoplastic constitutive problem containing the

Mohr-Coulomb yield criterion and a consequent construction of the consistent tan-

gent operator which is important for Newton-like methods in elastoplasticity. This

constitutive problem is broadly exploited in soil and rock mechanics and many var-

ious solution schemes were suggested. For their detailed overview and historical

development, we refer the recent papers [1] and [3], respectively. Nevertheless, it

is still a challenging problem due to its technical complexity. It follows from the

fact that the Mohr-Coulomb yield surface is a hexagonal pyramid aligned with the

hydrostatic axis in terms of principal stresses.

We consider the Mohr-Coulomb constitutive initial-value problem introduced in

[2, Sections 6.3–6.6] which can optionally contain the nonassociative flow rule and
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the nonlinear isotropic hardening. The solution scheme mainly depends on a formu-

lation of the problem and its discretization. For example, the scheme based on the

multisurface representation of the flow rule and the implicit Euler discretization is

derived in detail in [2, Section 8.2]. To improve this conventional scheme, we use

the subdifferential formulation of the flow rule instead of the multisurface one. The

subdifferential-based implicit solution concept was proposed in [5] for yield criteria

containing 1 or 2 singular points on the yield surface. Then it was extended to the

Mohr-Coulomb problem in [4]. Here, we summarize the main results from [4] and

write the solution scheme in more readable form.

The rest of the contribution is organized as follows. In Section 2, the Mohr-

Coulomb constitutive problem discretized by the implicit Euler method is introduced.

Section 3 contains selected theoretical results characterizing the problem. Based on

these results, the improved solution scheme is introduced, see Section 4. Finally,

some concluding remarks are mentioned in Section 5.

Besides scalar variables, we work mainly with second and fourth order tensors.

For easier orientation in the text, we denote the second order tensors by bold letters

and the fourth order tensors by capital blackboard letters, e.g., De or I. The sym-

bols ⊗ and : mean the tensor product and the biscalar product, respectively (see,

e.g., [2]). We also use the following notation: R+ := {z ∈ R; z ≥ 0} and R3×3
sym for

the space of symmetric, second order tensors.

2. Formulation of the discretized problem

Let σ, ε, εp ∈ R3×3
sym, ε̄

p, κ, λ ∈ R+ denote the stress tensor, the strain tensor, the

plastic strain tensor, the hardening variable, the thermodynamical hardening force,

and the plastic multiplier, respectively. The spectral decomposition of the stress

tensor reads as:

σ =

3
∑

i=1

σiei ⊗ ei, σ1 ≥ σ2 ≥ σ3, (1)

where σ1, σ2, σ3 are the ordered eigenvalues (the principal stresses) of σ and e1, e2, e3
are the corresponding eigenvectors. Recall that σ1, σ2, σ3 are uniquely defined with

respect to the prescribed ordering. The Mohr-Coulomb yield function and the related

plastic potential are defined as follows:

f(σ, κ) = (1 + sinφ)σ1 − (1− sin φ)σ3 − 2(c0 + κ) cosφ, (2)

g(σ) = (1 + sinψ)σ1 − (1− sinψ)σ3, (3)

respectively. Here, the material parameters c0 > 0, φ, ψ ∈ (0, π/2) represent the

initial cohesion, the friction angle, and the dilatancy angle, respectively. It is worth

mentioning that g is a convex function and thus one can use its subdifferential ∂g(σ).

Further, define the fourth order tensor

De =
1

3
(3K − 2G)I ⊗ I + 2GI, (4)
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representing linear and isotropic elastic response, where K,G > 0 denote the bulk

and shear moduli, respectively, I is the second order identity tensor ([I]ij = δij ,

i, j = 1, 2, 3), and I is the fourth order identity tensor ([I]ijkl = δikδjl, i, j, k, l =

1, 2, 3). Finally, it holds that κ = H(ε̄p), where H is a nondecreasing, continuous,

and piecewise smooth function satisfying H(0) = 0. As in [2], we let this function in

an abstract form.

The elastoplastic constitutive initial value problem is defined on a pseudo-time

interval [0, T ]. With respect to the implicit Euler discretization, we consider a par-

tition 0 = t0 < t1 < . . . < tk < . . . < tN = T , fix a step k and denote σ := σ(tk),

ε := ε(tk), ε
p := ε

p(tk), ε̄
p := ε̄p(tk), △λ = λ(tk) − λ(tk−1), ε̄

p,tr := ε̄p(tk−1),

ε
tr := ε(tk) − ε

p(tk−1), and σ
tr := De : εtr. Here, the superscript tr is the stan-

dard notation for the so-called trial variables which are known (see, e.g., [2]). The

k-th step problem reads as:

Given σ
tr and ε̄p,tr. Find σ, ε̄p, and △λ satisfying:

σ = σ
tr −△λDe : ν, ν ∈ ∂g(σ),

ε̄p = ε̄p,tr +△λ(2 cosφ),

△λ ≥ 0, f(σ, H(ε̄p)) ≤ 0, △λf(σ, H(ε̄p)) = 0.











(5)

Notice that the remaining unknown variables can be computed from the solution

components σ, ε̄p, and △λ. For example, it holds that εp(tk) = ε(tk)−D−1
e : σ(tk).

3. Useful theoretical results

In this section, we summarize some theoretical results concerning problem (5).

This framework is important for understanding of the solution scheme introduced in

Section 4.

The first result enables to write problem (5) only in terms of principal stresses.

For its derivation, it was necessary to find the subdifferential ∂g(σ) in closed form

with respect to (3), see [4, Lemma 4.1].

Lemma 1. Let (σ, ε̄p,△λ) be a solution to (5) for given σ
tr and ε̄p,tr. Let σi, σ

tr
i , i =

1, 2, 3, be the ordered eigenvalues of σ and σ
tr, respectively. Then (σ1, σ2, σ3, ε̄

p,△λ)
is a solution to:

σi = σtri −△λ
[

2
3
(3K − 2G) sinψ + 2Gνi

]

, i = 1, 2, 3,

ε̄p = ε̄p,tr +△λ(2 cosφ),

△λ ≥ 0, (1 + sin φ)σ1 − (1− sin φ)σ3 − 2(c0 +H(ε̄p)) cosφ ≤ 0,

△λ [(1 + sinφ)σ1 − (1− sin φ)σ3 − 2(c0 +H(ε̄p)) cosφ] = 0,



















(6)

where ν1, ν2, ν3 are the eigenvalues of ν ∈ ∂g(σ) satisfying

1 + sinψ ≥ ν1 ≥ ν2 ≥ ν3 ≥ −1 + sinψ, ν1 + ν2 + ν3 = 2 sinψ,

(ν1 − 1− sinψ)(σ1 − σ2) = 0, (ν3 + 1− sinψ)(σ2 − σ3) = 0.

}

(7)
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Conversely, if (σ1, σ2, σ3, ε̄
p,△λ) is a solution to (6) then (σ, ε̄p,△λ) solves (5),

where σ =
∑3

i=1 σie
tr
i ⊗e

tr
i and e

tr
1 , e

tr
2 , e

tr
3 are the eigenvectors of σtr with respect to

the ordering σtr1 ≥ σtr2 ≥ σtr3 .

A further simplification of the problem is possible under additional assumptions

on the solution to problem (6). First, assume △λ = 0. Then the elastic response

appears and it holds: σi = σtri , i = 1, 2, 3, ε̄p = ε̄p,tr, and

f(σtr, H(ε̄p,tr)) = (1 + sinφ)σtr1 − (1− sinφ)σtr3 − 2(c0 +H(ε̄p,tr)) cosφ ≤ 0. (8)

In fact, (8) is a necessary and sufficient condition for △λ = 0. If △λ > 0 then the

unknown principal stresses lie on the yield surface of the Mohr-Coulomb pyramid

as follows from (6)4. We distinguish four possible positions on the yield surface:

the smooth portion (σ1 > σ2 > σ3), the left edge (σ1 = σ2 > σ3), the right edge

(σ1 > σ2 = σ3), and the apex (σ1 = σ2 = σ3). This terminology follows from [2].

For each position, one can introduce a special solution scheme, the so-called return-

mapping scheme. These schemes are introduced in Sections 4.4-4.7. Briefly speaking,

nonlinear equations qtrs (△λ) = 0, qtrl (△λ) = 0, qtrr (△λ) = 0, and qtra (△λ) = 0 are

derived within these schemes, respectively. After finding their solutions, one can

easily compute the remaining unknowns. However, only one type of the return-

mapping usually leads to the solution of problem (6) and the remaining schemes

produce incorrect solutions. To find the correct scheme, we define the intervals Ctr
s ,

Ctr
l , C

tr
r , C

tr
a introduced in Section 4.1. These intervals are mutually disjoint, their

union is equal to R+, and either Ctr
l = ∅ or Ctr

r = ∅. For example, the return to the

smooth portion appears if the solution of qtrs (△λ) = 0 belongs to Ctr
s . Analogous

criteria hold for the remaining return types.

It seems that one must successively solve the nonlinear equations with qtrs , q
tr
l ,

qtrr , q
tr
a to find the correct scheme. Similar blind guesswork is also introduced, e.g.,

in [2, Section 8.2]. Nevertheless, the presented approach enables to derive a priori

decision criteria to detect the stress position on the yield surface, without any blind

guesswork. To this end, we introduce the following useful result [4, Lemma 4.2].

Lemma 2. There exists a unique function qtr : R+ → R satisfying:

(i) qtr|Ctr
s
= qtrs , q

tr|Ctr
l
= qtrl , q

tr|Ctr
r
= qtrr , q

tr|Ctr
a
= qtra .

(ii) qtr is continuous, piecewise smooth, and decreasing in R+.

(iii) qtr(0) = f(σtr, H(ε̄p,tr)).

(iv) qtr(γ) → −∞ as γ → +∞.

The properties of the function qtr have many important consequences. First, they

imply the main solvability result [4, Theorems 4.4–4.6].
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Theorem 3. Problems (5) and (6) have unique solutions and the solution compo-

nent △λ satisfies qtr(△λ) = 0.

Second, one can easily detect one of the intervals Ctr
s , C

tr
l , C

tr
r , C

tr
a where val-

ues of qtr change the sign. It leads to the a priori decision criteria introduced in

Section 4.2. Finally, by Lemma 2, one can easily investigate properties of the stress-

strain constitutive operator: σ = T (εtr; ε̄p,tr). It is expected that this mapping is

Lipschitz continuous and semismooth as follows from the discussion in [4].

The generalized derivative (in Clark’s sense) of T represents the consistent tan-

gent operator. This derivative defines the fourth order tensor T, i.e., if T is differ-

entiable at (εtr; ε̄p,tr) then T = ∂T /∂εtr. The formulas defining T for each stress

position are introduced in Sections 4.3-4.7. In case of the associative plasticity, i.e.,

if ψ = φ, the tangent stiffness matrix is symmetric, otherwise it is nonsymmetric.

Let us note that the stress-strain operator is substituted into the balance equation

leading to the incremental boundary value elastoplastic problem. The consistent

tangent operator is used for assembling of the tangent stiffness matrix which is

important for solving this problem by Newton-like methods [2, 4, 5].

4. Solution scheme

This section is organized as follows. Section 4.1 contains an auxilliary notation.

In Section 4.2, a priori decision criteria for the elastic response and the returns to the

smooth portion, the left edge, the right edge, and the apex of the yield surface are

summarized. The solution schemes for these cases are introduced in parallel Sections

4.3–4.7, respectively.

4.1. Auxilliary notation

Recall that εtr and ε̄p,tr are known in (5). The ordered eigenvalues εtr1 ≥ εtr2 ≥ εtr3
of εtr can be determined using the Haigh-Westergaard coordinates (see, e.g., [2]).

Other auxilliary notation is summarized below:

• σtri = 1
3
(3K − 2G)(εtr1 + εtr2 + εtr3 ) + 2Gεtri , i = 1, 2, 3 — trial principal stresses

• Etr,2, [Etr,2]ijkl = δik[ε
tr]lj + δjl[ε

tr]ik — Fréchet derivative of (εtr)2

• γtrs,l =
σtr1 − σtr2

2G(1 + sinψ)
, γtrs,r =

σtr2 − σtr3
2G(1− sinψ)

,

• γtrl,a =
σtr1 + σtr2 − 2σtr3
2G(3− sinψ)

, γtrr,a =
2σtr1 − σtr2 − σtr3
2G(3 + sinψ)

• Ctr
s =

(

0,min{γtrs,l, γ
tr
s,r}

)

, Ctr
l =

[

γtrs,l, γ
tr
l,a

)

,

• Ctr
r =

[

γtrs,r, γ
tr
r,a

)

, Ctr
a =

[

max{γtrl,a, γ
tr
r,a},+∞

)

• S = 4
3
(3K − 2G) sinψ sinφ+ 4G(1 + sinψ sin φ)
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• L = 4
3
(3K − 2G) sinψ sinφ+G(1 + sinψ)(1 + sinφ) + 2G(1− sinψ)(1− sinφ)

• R = 4
3
(3K − 2G) sinψ sinφ+2G(1 + sinψ)(1 + sin φ) +G(1− sinψ)(1− sinφ)

• A = 4K sinψ sin φ

• h(γ) = 2 [c0 +H (ε̄p,tr + γ(2 cosφ))] cosφ

• qtrs (γ) = (1 + sinφ)σtr1 − (1− sinφ)σtr3 − h(γ)− Sγ

• qtrl (γ) =
1
2
(1 + sinφ)(σtr1 + σtr2 )− (1− sin φ)σtr3 − h(γ)− Lγ

• qtrr (γ) = (1 + sinφ)σtr1 − 1
2
(1− sinφ)(σtr2 + σtr3 )− h(γ)−Rγ

• qtra (γ) =
2
3
(σtr1 + σtr2 + σtr3 ) sinφ− h(γ)− Aγ

• H1 = h′(△λ) = 4H ′(ε̄p,tr +△λ(2 cosφ)) cos2 φ — possibly, we take the deriva-

tive from the left if h′(△λ) does not exist

4.2. A priori decision criteria

The criteria introduced below are mutually disjoint, i.e., for a given pair (εtr, ε̄p,tr),

only one possibility is realized.

The elastic response:

• (1 + sin φ)σtr1 − (1− sin φ)σtr3 − 2(c0 +H(ε̄p,tr)) cosφ ≤ 0

The return to the smooth portion of the yield surface:

• (1 + sin φ)σtr1 − (1− sin φ)σtr3 − 2(c0 +H(ε̄p,tr)) cosφ > 0

• qtrs (min{γtrs,l, γ
tr
s,r}) < 0

The return to the left edge of the yield surface:

• (1 + sin φ)σtr1 − (1− sin φ)σtr3 − 2(c0 +H(ε̄p,tr)) cosφ > 0

• γtrs,l < γtrl,a, q
tr
l (γ

tr
s,l) ≥ 0, qtrl (γ

tr
l,a) < 0

The return to the right edge of the yield surface:

• (1 + sin φ)σtr1 − (1− sin φ)σtr3 − 2(c0 +H(ε̄p,tr)) cosφ > 0

• γtrs,r < γtrr,a, q
tr
r (γ

tr
s,r) ≥ 0, qtrr (γ

tr
r,a) < 0

The return to the apex of the yield surface:

• (1 + sin φ)σtr1 − (1− sin φ)σtr3 − 2(c0 +H(ε̄p,tr)) cosφ > 0

• qtra (max{γtrl,a, γ
tr
r,a}) ≥ 0

Notice that other very useful necessary conditions for the returns to the smooth

portion, the left and right edges are introduced in Sections 4.4–4.6, respectively.

These conditions were derived in [4] and simplify the construction of the consistent

tangent operator.
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4.3. Solution scheme for the elastic response

• △λ = 0

• σi = σtri , i = 1, 2, 3

• ε̄p = ε̄p,tr

• σ = σ
tr

• T = De

4.4. Solution scheme for the return to the smooth portion

It is worth mentioning that εtr1 > εtr2 > εtr3 is a necessary condition for this return.

Therefore, the following auxilliary formulas are well-defined:

E
tr
i =

(εtr − εtrj I)(ε
tr − εtrk I)

(εtri − εtrj )(ε
tr
i − εtrk )

, i 6= j 6= k 6= i, i = 1, 2, 3,

F
tr
s,φ = 2G(1 + sinφ)Etr

1 − 2G(1− sin φ)Etr
3 +

2

3
(3K − 2G) sinφI,

F
tr
s,ψ = 2G(1 + sinψ)Etr

1 − 2G(1− sinψ)Etr
3 +

2

3
(3K − 2G) sinψI,

Etri =
Etr,2 − (εtrj + εtrk )I− (2εtri − εtrj − εtrk )E

tr
i ⊗E

tr
i

(εtri − εtrj )(ε
tr
i − εtrk )

−
(εtrj − εtrk )[E

tr
j ⊗E

tr
j −E

tr
k ⊗E

tr
k ]

(εtri − εtrj )(ε
tr
i − εtrk )

, i 6= j 6= k 6= i, i = 1, 2, 3.

It is well-known that Etr
1 ,E

tr
2 ,E

tr
3 define the eigenprojections of εtr [2]. Further, it

holds: Etr
i = ∂εtri /∂ε

tr and Etri = ∂Etr
i /∂ε

tr, i = 1, 2, 3. The solution scheme for the

return to the smooth portion reads as:

• △λ ∈ Ctr
s and solves qtrs (△λ) = 0

• σ1 = σtr1 −△λ
[

2
3
(3K − 2G) sinψ + 2G(1 + sinψ)

]

• σ2 = σtr2 −△λ
[

2
3
(3K − 2G) sinψ

]

• σ3 = σtr3 −△λ
[

2
3
(3K − 2G) sinψ − 2G(1− sinψ)

]

• ε̄p = ε̄p,tr +△λ(2 cosφ)

• σ = σ1E
tr
1 + σ2E

tr
2 + σ3E

tr
3

• T =
∑3

i=1

[

σiE
tr
i + 2GEtr

i ⊗E
tr
i

]

+ 1
3
(3K − 2G)I ⊗ I −

1

S +H1
F
tr
s,ψ ⊗ F

tr
s,φ
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4.5. Solution scheme for the return to the left edge

For this return, the only one sharp inequality is guaranteed: εtr2 > εtr3 . We use

the following auxilliary and well-defined formulas:

E
tr
3 =

(εtr − εtr1 I)(ε
tr − εtr2 I)

(εtr3 − εtr1 )(ε
tr
3 − εtr2 )

, E
tr
12 = I −E

tr
3 ,

F
tr
l,φ = G(1 + sinφ)Etr

12 − 2G(1− sinφ)Etr
3 +

2

3
(3K − 2G) sinφI,

F
tr
l,ψ = G(1 + sinψ)Etr

12 − 2G(1− sinψ)Etr
3 +

2

3
(3K − 2G) sinψI,

Etr3 =
Etr,2 − (εtr1 + εtr2 )I− [εtr ⊗E

tr
12 +E

tr
12 ⊗ ε

tr] + (εtr1 + εtr2 )E
tr
12 ⊗E

tr
12

(εtr3 − εtr1 )(ε
tr
3 − εtr2 )

+
(εtr1 + εtr2 − 2εtr3 )E

tr
3 ⊗E

tr
3 + εtr3 [E

tr
12 ⊗E

tr
3 +E

tr
3 ⊗E

tr
12]

(εtr3 − εtr1 )(ε
tr
3 − εtr2 )

.

It is possible to prove that the definitions of Etr3 introduced here and in Section 4.4

are equivalent under the assumption εtr1 > εtr2 > εtr3 . The solution scheme for the

return to the left edge reads as:

• △λ ∈ Ctr
l and solves qtrl (△λ) = 0

• σ1 = σ2 =
1
2
(σtr1 + σtr2 )−△λ

[

2
3
(3K − 2G) sinψ +G(1 + sinψ)

]

• σ3 = σtr3 −△λ
[

2
3
(3K − 2G) sinψ − 2G(1− sinψ)

]

• ε̄p = ε̄p,tr +△λ(2 cosφ)

• σ = σ1E
tr
12 + σ3E

tr
3

•







T = (σ3 − σ1)E
tr
3 +GEtr

12 ⊗E
tr
12 + 2GEtr

3 ⊗E
tr
3 + 1

3
(3K − 2G)I ⊗ I

−
1

L+H1

F
tr
l,ψ ⊗ F

tr
l,φ

4.6. Solution scheme for the return to the right edge

For this return, the inequality εtr1 > εtr2 is guaranteed. We use the following

auxilliary and well-defined formulas:

E
tr
1 =

(εtr − εtr2 I)(ε
tr − εtr3 I)

(εtr1 − εtr2 )(ε
tr
1 − εtr3 )

, E
tr
23 = I −E

tr
1 ,

F
tr
r,φ = 2G(1 + sinφ)Etr

1 −G(1− sin φ)Etr
23 +

2

3
(3K − 2G) sinφI,

F
tr
r,ψ = 2G(1 + sinψ)Etr

1 −G(1− sinψ)Etr
23 +

2

3
(3K − 2G) sinψI,

Etr1 =
Etr,2 − (εtr2 + εtr3 )I− [εtr ⊗E

tr
23 +E

tr
23 ⊗ ε

tr] + (εtr2 + εtr3 )E
tr
23 ⊗E

tr
23

(εtr1 − εtr2 )(ε
tr
1 − εtr2 )

+
(εtr2 + εtr3 − 2εtr1 )E

tr
1 ⊗E1 + εtr1 [E

tr
23 ⊗E

tr
1 +E

tr
1 ⊗E

tr
23]

(εtr1 − εtr2 )(ε
tr
1 − εtr3 )

.
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It is possible to prove that the definitions of Etr1 introduced here and in Section 4.4

are equivalent under the assumption εtr1 > εtr2 > εtr3 . The solution scheme for the

return to the right edge reads as:

• △λ ∈ Ctr
r and solves qtrr (△λ) = 0

• σ1 = σtr1 −△λ
[

2
3
(3K − 2G) sinψ + 2G(1 + sinψ)

]

• σ2 = σ3 =
1
2
(σtr2 + σtr3 )−△λ

[

2
3
(3K − 2G) sinψ −G(1− sinψ)

]

• ε̄p = ε̄p,tr +△λ(2 cosφ)

• σ = σ1E
tr
1 + σ3E

tr
23

•







T = (σ1 − σ3)E
tr
1 + 2GEtr

1 ⊗E
tr
1 +GEtr

23 ⊗E
tr
23 +

1
3
(3K − 2G)I ⊗ I

−
1

R +H1

F
tr
r,ψ ⊗ F

tr
r,φ

4.7. Solution scheme for the return to the apex

• △λ ∈ Ctr
a and solves qtra (△λ) = 0

• σ1 = σ2 = σ3 =
1
3
(σtr1 + σtr2 + σtr3 )−△λ[2K sinψ]

• ε̄p = ε̄p,tr +△λ(2 cosφ)

• σ = σ1I

• T = K

(

1−
A

A+H1

)

I ⊗ I

5. Conclusion

The subdifferential-based constitutive solution scheme for the Mohr-Coulomb

model was introduced. This technique has several advantages in comparison to the

current ones. First, it enabled a deeper analysis of the constitutive problem. Sec-

ond, a priori decision criteria were derived for each position of the unknown stress

tensor on the yield surface. Finally, for each return type, we specified the neces-

sary conditions on multiplicity of εtr1 , ε
tr
2 , ε

tr
3 . Such conditions are crucial for the

correct definition of the consistent tangent operator T. Without this knowledge, an

additional branching in the definition of T must be introduced as in [2, Appendix A].

The presented solution schemes were implemented in Matlab codes for the anal-

ysis of slope stability in 2D and 3D. The codes are publicly available in [6] and the

used numerical techniques are described in [4].
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Abstract: New materials, structures and technologies used in civil engineer-
ing impeach traditional evaluations of the annual thermal consumption of
buildings, based on the quasi-stationary estimate of the thermal resistance
of the building envelope, or some operational parts of such building with the
guaranteed temperature. The complete proper physical analysis, applying the
principles of thermodynamics and appropriate constitutive relations for partic-
ular material layers and air in rooms, is not realistic because of the stochastic
character of physical processes, of the need of identification of a lot of ma-
terial characteristics, of the barely predictable behaviour of users, as well as
of the limited financial budgets of investors. From the soliciting compromise
solutions, this paper pays attention to the simplified formulation of dynamic
behaviour of a building as a nonlinear thermal system, referring to certain
analogy with the analysis of electrical circuits. Numerical solution applies the
finite element technique, the method of lines and the spectral analysis of dif-
ferential operators. The practical implementation is performed in MATLAB.

Keywords: building heat transfer, computational optimization, Fourier anal-
ysis

MSC: 80A20, 35K20, 65K10

1. Introduction

Application of advanced materials, structures and technologies in civil engineer-

ing forces new approaches to the physical, mathematical and computational analysis

of both new and reconstructed buildings. Moreover, a lot of European and national

directives and technical standards requires the evaluation of various thermal certifi-

cates, as the European directive [25], forcing the “passive house” properties, taken

from [9], for all building actions starting 2020 and later. Unfortunately, the complete

proper physical analysis of thermal behaviour of buildings, based on the application of

the principles of thermodynamics and appropriate constitutive relations for particu-

lar material layers and air in rooms, is not realistic because of the stochastic character
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of physical processes, of the need of identification of a lot of material characteristics,

of the barely predictable behaviour of users, as well as of the limited financial budgets

of investors. The periodically updated list www.buildingenergysoftwaretools.com

(formerly hosted by the US Department of Energy) contains about 500 relevant soft-

ware tools; however, a physically transparent, intuitive, simple, robust and reliable

numerical solver for the evaluation of energy consumption of a building, supporting

the optimization of its design, too, is still not available.

The progress in this research area in the last 2 decades can be documented

on [19], [15] and [22] and on numerous further references therein. Strong physical

and geometrical simplifications are often overcome using some elements of soft com-

puting by [17]: fuzzy sets, rough classifications, genetic algorithms, etc. However,

some their assumptions, connecting the thermal analysis with the simplified one-

dimensional study of electrical circuits, relying on the finite difference and lumped

mass approaches, can be removed or modified, following the weak formulation and

using the properties of the Fourier decomposition. In this paper we shall come

from the consideration of a building as a thermal system, suggested in [20]; for the

prediction and control of energy consumption for heating of rooms (including more

references) cf. [12].

2. A model problem

Let us consider an open set (e. g. a domain) Ω in the 3-dimensional Euclidean

space R3, supplied by the Cartesian coordinate system x = (x1, x2, x3), with its

boundary ∂Ω where the local vector of (formally outward) unit normal n(x) =

(n1(x), n2(x), n3(x)) can be introduced. The usual notation for the Hamilton op-

erator ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3) and for the Laplace one ∆ = ∇ · ∇, with the

central dot used for the scalar product in R3, will be used. Moreover, let us consider

a time interval I = [0, τ ] with some real positive τ ; the limit passage τ → ∞ is

not prohibited, the dot symbol is reserved for partial derivatives with respect to the

time t ∈ I, whereas the prime symbol will mean the derivative with respect to the

following variable everywhere. For the brevity of notation, in this short paper we

shall assume an (at least macroscopically) isotropic material (not homogeneous in

general) located in Ω; the straightforward generalization is left to the reader.

The conservation principle for a scalar quantity w(x, t) on Ω and its flux η(w(x, t)),

following [3], p. 5, and [10], p. 9, reads

ε̇(w) +∇ · η(w) = F(w) (1)

where ε(w(x, t)) evaluates the non-stationary redistribution of w(x, t) and F(w(x, t),

x, t) the sources occurring on Ω × I. Some constitutive relations for η and ε are

needed: here we shall introduce them in the (rather simple) forms

ε̇(w) = ε′(w)ẇ = κ(w)ẇ , (2)

η(w) = −∇β(w) = −β ′(w)∇w = −λ(w)∇w (3)
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where β are certain a priori known functions of w (for their relation to the so-called

enthalpy transform see [18], p. 252) and κ and λ are the material characteristics, in

general functions of w again (but not of x and t explicitly), used in most engineering

applications. We shall work with the unified boundary condition

∇η(w) · n = G(w) , (4)

on ∂Ω, containing the sources G(w(x, t), x, t); some special forms of both F and

G will be introduced later. Let us remark that such definitions of F and G are

open to handle relations between different quantities w, as temperature, velocity

components or density, considered as reference variables in conservation principles

for energy, momentum and mass.

Inserting only the 1st equation from (3) into (1), we obtain

ε̇(w)−∆β(w) = F(w) . (5)

Applying the Kirchhoff transform, ε(w) in (5) can be simplified to w, using certain

modified variable w; for more details see [23], with several important references

to [18]. In particular, for the constant values of κ and λ from (2) and (3) such

transform is very easy. Unfortunately, in most other cases this makes namely (4)

rather complicated and is not friendly to numerical approximations, thus we shall

work with the original forms of (1), (2), (3) and (4) here. To solve w from such

system of equation of evolution, the knowledge of initial values w0(x) of w(x, t) with

t = 0 for any x ∈ Ω is also needed, i.e.

w(., 0) = w0 . (6)

Using the Green -Ostrogradskǐı theorem formally, we are able to convert (at least

in the sense of distributions) (1), (2), (3) and (4) to

(v, κ(.)ẇ) + (∇v, λ(.)∇w) = (v,F(.)) + 〈v,G(.)〉 (7)

with any test function v(x) from an appropriate function space introduced on Ω,

scalar products (., .) on L2(Ω) and L2(Ω)3, or their generalizations in the sense of

dualities in non-unitary spaces, similarly 〈., .〉 on L2(∂Ω), etc. Then (7) can be

understood as a weak (but physically transparent) condition for the conservation of

a scalar quantity w.

A generalization of this approach to more complicated configurations, including

a finite number of open sets Ω and a set of their mutual boundary parts, is straight-

forward, although not quite easy. We shall discuss this approach for the special

case of the simplified evaluation of thermal transfer in buildings. In this case we

are allowed to formulate only one principle of conservation of (thermal) energy (or

enthalpy), with the (absolute) temperature w as the reference variable. A building is

considered as a thermal system where all particular elements and subsystems (repre-

sented by Ω here) are coupled using the interface thermal fluxes from all admissible
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adjacent elements and subsystems, as well as from the external environment. All

terms (.) here, for the simplicity, refer to the possible dependence of related quan-

tities on w; the significance of such dependence may be very different in practical

engineering applications. In such reasonable model, F and G, needed in (7), come:

i) F from the heat sources in rooms, controlled to satisfy requirements of technical

standards (which can be quantified as an optimization problem or using some

results from the control theory), together with certain well-being of inhabitants

(whose quantification relies to expert decisions, soft-computing or advanced

statistical approaches – cf. [14]) and ([7]),

ii) F from the obligatory air exchange in rooms, with similar limitations as i),

iii) G from the heat convection, driven by external temperature development in

day and year quasi-cycles, expressible as

G(w) = α(.)(w× − w) (8)

on ∂Ω where α (a function of w and w× in general) is the transfer factor and

× refers to the external environment, which can be repeated literally for the

transfer between rooms and separating structures, too,

iv) G from the heat radiation by the Stefan - Boltzmann law,

G(w) = σ(.)(w4
× − w4) = σ(.)(w× − w)(w× + w)(w2

× + w2) (9)

on ∂Ω where σ replaces α from iii) (its value is related usually to the the-

oretical one, derived for the unshaded perfectly black surface, utilizing some

multiplicative correction factors),

v) G from the direct and diffusive solar heat radiation, due to the geographical

location, slope and orientation of building surfaces, their (natural or artificial)

shading, etc. – for more details see [12].

3. Fourier approximations

In general, using the Einstein convention for all sum indices i, j, k ∈ {1, 2, . . . , n},
with n → ∞ theoretically, we can seek for the evolution of w, utilizing the multi-

plicative Fourier decompositions, by [1], p. 215, and [6], p. 346, in the form

w(x, t) = ϕi(x)ui(t) (10)

where ϕi form a sufficiently rich system of functions defined on Ω (or on a union

of a finite number of such open sets, as sketched above) approximating the needed

space of all ϕ (e. g. the Sobolev space W 1,2(Ω) or some weighted space derived from

it – see [18], p. 14) and ui represent some (a priori unknown) functions of time. The

choice of ϕi refers frequently to various finite element techniques – cf. [5], pp. 299, 323.
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Assuming that some system of (fundamental) solutions of (7), i. e. those inde-

pendent of (6)) Uik, is available, we can rewrite (10) as

w(x, t) = ϕi(x)Uik(t)ck (11)

with some unknown real constants ck, satisfying (6) (at least) in the least squares

(minimum variation) sense – cf. [4], p. 133. All test function in (7) can be then

selected as v = ϕj. Consequently we have a system of linear algebraic equations

[

(ϕj , κ(.)ϕi)U̇ik + (∇ϕj, λ(.)∇ϕi)Uik

]

ck = (ϕj,F(.)) + 〈ϕj,G(.)〉 . (12)

Let us notice that for practical computations the following heuristic linearization

is useful: all values referenced by (.) should be estimated from the preceding time,

as the initial choice for the algorithm of their successive improvement inside any

time step. The proper mathematical and numerical analysis of relevant algorithms

is needed; however, in this paper we shall sketch it only in one special case.

4. Thermal performance of buildings

For the computational analysis of thermal performance of buildings, applying

the system approach, as introduced above, taking (11) and (12) to account, we can

convert (7) to the matrix form

Mu̇+Ku = f + ġ (13)

where the real square matrices M and K come for two left-side additive term of (7),

together with all appropriate parts of (8) by iii) and (9) by iv), the vector f is

then generated by i), v) and the remaining terms from iii) and iv) and the vector g

by ii); another supplement to iii) is allowed to come for the properly controlled ar-

tificial heating, to save the temperature in rooms at the level required by technical

standards. Roughly speaking: M represents the thermal accumulation properties,

K the thermal insulation ones, whereas f(t) and g(t) (namely their additive compo-

nents) correspond to various types of time-variable heat sources. The best design of

a vector of unknowns u(t) seems to be that it refers to temperature values on a suf-

ficiently rich set of points characterizing the building (typically for the application

of Lagrange interpolation in the finite element method); its n components can be

obtained from (10) in the form

(ϕi, ϕk)ui(t) = (w(., t), ϕk) . (14)

Let us notice the close relation of (13) to the generalized eigenvalue problem

MV = V Λ (15)

where Λ is a diagonal matrix of all eigenvalues and V contain all eigenvectors in

its corresponding columns; both V and Λ can be positive and real, which depends
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on the suitable (classical Fourier, finite element, wavelet, etc.) choice of the basis

ϕi (i ∈ {1, 2, . . . n}). Consequently the method of variation of constants, coming

from (15), in account with (6), gives the result

u(t) = V exp(−Λt)V TMu0 + V

∫ t

0

exp(Λ(τ − t))V T (f(τ) + ġ(τ)) dτ . (16)

In particular, for a finite positive time step h, to evaluate u1 ≈ u(h) from u0

derived from (14) and (6) (and similarly u2 ≈ u(2h) from u1, etc.), assuming that

f and g are (for simplicity) linear splines defined on the set {0, h, 2h . . .} with the

accurate values f s = f(sh) and gs = g(sh) for s ∈ {0, 1, 2, . . .}, we come to the

result, useful for the design of practical algorithms,

u1 − V exp(−Λh)V TMu0 = V (I − exp(−Λh))· (17)

·

(

Λ−1V T g
1 − g0

h
− Λ−2V T f

1 − f 0

h

)

+ V Λ−1V Tf 1 − V Λ−1 exp(−Λh)V Tf 0 .

The Taylor expansion I − exp(−Λh) ≈ Λh, with the error O(h2), applied to (17),

leads to the Euler explicit scheme (unstable for real buildings and climatic records

frequently), whereas the implicit one can be forced by the backward integration with

the exchanged role of u0 and u1; for the comparison to the Crank -Nicholson, etc.

schemes and the detailed stability and accuracy analysis see [2], pp. 639, 646. Here we

intend to demonstrate namely the implementation of the influence of solar radiation

to the computational algorithm based on (17) and the possibility of optimal control

of artificial heating.

5. Solar radiation

Solar radiation can be handled using the surface thermal fluxes G, contributing
(in the relevant finite element or similar discretization – for more details see [23])

to f in (13), whose evaluation as the sum of beam (direct) and diffusive radiation

intensities qb and qd comes from the analysis of mutual Sun –Earth positions and from

the location and orientation of a building. The preliminaries for such calculations

are explained in [21], [16] and [11]; their assessment to a real building object (due to

its location, orientation, surface properties, etc.) relies on [15], the detailed analysis

of this type is contained in [13], p. 47.

Following [15], let us introduce the surface reflexivity ρ, together with certain

shading factors ρb and ρd. Let us also consider the geographical latitude φ, the

azimuth angle γ (depending on the building orientation, related to south), and

the angle β between the building surface and the horizontal plane. The evalua-

tion day and year cycles of Sun –Earth positions requires the knowledge of declina-

tion δ(N) = 0.13027̇π sin(2π(284 + N)/365) (presented here only for the standard

year length of 365 days for simplicity) and of the day time angle ω(ξ) = πξ for

ξ = (1 − (t − t×))/t∗; N ∈ {1, . . . , 365} refers to the day in the year, t× to the
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initial day time and t∗ (formally) to the standard day length. Further astronomical

corrections and generalizations of δ(N), ω(ξ), etc., are available, but not presented

and implemented here, because of i) the substantial extension of computational for-

mulae, ii) the lack of methods and input data for reasonable setting of corresponding

physical characteristics. Neglecting such corrections and generalizations, the zenith

angle ς comes from the relation

cos ς = sinφ sin δ(N) + cosφ cos δ(N) cosω(ξ) , (18)

whereas the real angle of incidence of sunrays ϑ needs to calculate

cosϑ = cos ς + sinφ(sin δ(N)(cos β − 1) + cos δ(N) sin β cos γ cosω(ξ))

+ cosφ(cos δ(N)(cos β − 1) cosω(ξ)− sin δ(N) sin β cos γ) (19)

+ cos δ(N) sin β sin γ sinω(ξ) .

Making use of (18) and (19), together with the measurement results for qb and qd,

we are finally able to evaluate

FLUG =ρbqb min(cosϑ, 0)/min(cos ς, 0.087) + ρdqd(1 + cos ϑ)/2 (20)

+ ρ(qb + qd)(1− cosϑ)/2 .

The above sketched model of solar radiation does not violate the formal linearity

of (13). Up to now, we have relied on the small changes of κ(.), λ(.), F(.) and G(.)
in (7), with the acceptable values taken from the previous time step in practical

calculations, following (13), with some potential improvements a posteriori. Never-

theless, the strongly nonlinear heat radiation by (9) should be discussed and handled

separately. In more details: f 0 and f 1 in (13) can be written as ˜f 0 + S(u0)4 and
˜f 1 + S(u1)4 where (.)4 means the 4th power of all components of (.) (later also (.)3

the 3rd power), S is a sparse diagonal matrix and ˜f 0 and ˜f 1 are independent of u0

and u1. The principal difficulty is the poor knowledge of u1 a priori (unlike u0); only

some initial estimate u1
∗ is available, e. g. u1

∗ ≈ u0. For the brevity of notation, let

ũ1 be the result (instead of u1) obtained from (13) with the correct f 0, but with f 1

replaced by ˜f 1. Consequently we have

u1 = ũ1 + PS(u1)4 . (21)

where P = V Λ−1V T − V (I − exp(−Λh))Λ−2V T/h.

The exact Newton method, as derived in [8], pp. 101, 144, applied to (21), gives

(I − 4PS(u1
∗)

3)(u1 − u1
∗) = ũ1 − u1

∗ + PS(u1
∗)

4 , (22)

which can be repeated (with u1
∗ replaced by u1) in the iteration procedure (if needed,

to reach the required accuracy). However, in most application cases the additional

term PSu1 is not dominating on the right side of (21), consequently the first esti-

mate u1
∗ on the left side of (22) can be taken as fixed, which slightly disturbs the

Newton iteration process, but improves the algorithmic efficiency.
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6. Heating control

Assuming (for simplicity) the constant temperature in rooms in each time, the

conservation of (at least) prescribed temperature level ūs (s ∈ {1, 2, . . .}), e. g. of

selected elements of u from (13) corresponding (using the transform (14)) just to

rooms with some heating equipments, is required. However, the heating power of

these equipments Qs, valid for (s − 1)h < t ≤ sh, is limited, i. e. 0 ≤ Qs ≤ Qmax

for some upper bounds Qmax for particular rooms (which is a vector of much lesser

length than n in practice). Such upper bounds are design parameters of a building,

due to the volume, location and assumed exploitation of rooms.

Consequently we have to distinguish between 4 following artificial heating regimes:

1) no heating during the summer season, 2) inactive heating for sufficient temper-

ature outside the summer season, i. e. us ≥ us, 3) normal heating: setting of Qs

is needed, 4) insufficient heating for Qs ≥ Qs max by 3) when the reduction of Qs

to Qmax is necessary. Clearly, our principal aim is to evaluate Qs for the regime 3);

the modifications for all other regimes are obvious.

Let us compose W from the lines of the matrix V (I − exp(−Λh))Λ−1V T corre-

sponding to the temperature in rooms with artificial heating, and take Q as certain

additional ġ from artificial heating in (13). Using the least squares technique, we are

able to evaluate Qs from the rather simple formula

W TWQs = W T (ûs − u) (23)

where ûs corresponds to the hypothetical regime 1), active for (s − 1)h < t ≤ sh

(thus ûs can be evaluated by (17) directly), and u is related (using (14 again) to some

prescribed temperature level w, time-independent here for simplicity (but allowed to

have different values in particular rooms, due to the “thermal stability” requirements

in modern technical standards, unlike the classical “passive house” evaluation by [9]).

We can see that the system of linear algebraic equations (23) is small, thus its solution

should be inexpensive; moreover no further inequalities occur in the computational

algorithm.

In general, the Newton iterations by (21), including its above discussed modifica-

tion, disturb the direct evaluation ofQ1,Q2, . . . from (23). Fortunately, no additional

iterative tricks are needed in most application cases; the corresponding modifications

of Q1,Q2, . . . due to u1, u2, . . . including the heat radiation can be incorporated into

the inexact Newton process, as sketched in the preceding section.

7. Illustrative example

Our illustrative example presents the thermal analysis of a simple model build-

ing, considered as one great room, supplied by building enclosure with particular

constructive and insulation layers, located near Brno (Czech Republic); the more

complex example of a real building structure will be referenced in Conclusion. All

calculations are based on the one-dimensional model simplification, coming from the
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Figure 1: Temperature in a room and structures in January of the 1st year.

linearized heat conduction (no air flow is allowed) and on the application of the fi-

nite element method with linear splines as basis functions, with the original software

implementation inside the MATLAB environment. Thus it is useful to compare our

model with the approach of [22], based on the analogy with the analysis of electrical

RC-circuits; a relevant model circuit is described in [15], p. 447, and [22], p. 156,

in all details. The “lumped masses” by [22] generate diagonal matrices M (in our

notation); here we come to (slightly more general) sparse matrices M , with technical

details explained in [13], p. 62.

The following meteorological data in the time steps h = 1 hour, averaged to

the periodical form of the so-called reference year, from the international airport

Brno -Tuřany are available: i) the environmental temperature, ii) the total solar

radiation intensity, iii) the diffusive component of ii). Such data are sufficient to

perform all above sketched evaluations, including the annual energy consumption,

crucial for the thermal design of a building. The heating is insufficient, with the aim

of proper testing of switching between regimes 1), 2), 3), 4). No summer shading (or

air conditioning) is installed, to force the unwanted summer increase of temperature

in rooms. Three figures document the above sketched direct calculation procedure,

starting from the hypothetical inside temperature u0 = 20 ◦C everywhere. The same

minimum temperature level is assumed to be satisfied during the whole year. Visible

assertion of the thermal radiation due to the Stefan - Boltzmann law is limited to the

slight temperature decrease in some nights.
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Figure 2: Temperature in a room and structures during the 3rd year.

Figure 1 shows the development of temperature in selected locations of construc-

tive and insulation layers of walls, floors and roof (here just in selected layer centers

and interfaces) in the first month (January) of the first calculation year. Namely the

lower oscillating curve represents the environmental temperature, the curve rather

close to the required u0 = 20 ◦C. The non-negligible decrease of indoor temperature,

under u0 = 20 ◦C corresponds to the strange design of a building for software testing

purposes, as introduced above.

The climatic input data are available just for one reference year in practice, thus

for simulations considering more years they have to be applied as periodic ones, with

the period of 1 year. Apart from the artificial initial condition, one can expect the

nearly periodic development of temperature after a small number of years. Figure 2

presents the same computational results as Figure 1, but for the (less synoptic)

development of temperature in the third year (the results for the fourth year are

nearly the same). The summer overheating of rooms, in some cases even over the

prescribed environmental temperature (the maximum inside temperature exceeding

38 ◦C occurs in August, which corresponds to the temperature on the outer building

surface, oscillating up to 1 ◦C) is caused by the effect of solar radiation, whereas

the same radiation in winter, in the direction close to the normal one to most walls

and windows, helps to reduce the effect of the insufficient heating. Such idea comes
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Figure 3: Total consumption of energy for artificial heating during the 3rd year.

even from the ancient literature (Aischylos, Socrates); however, the implementation

of some active cooling system (air-conditioning) or at least a passive one (shading)

should be expected in modern buildings. More extensive comparative calculations

with 34 relevant figures and with the proper discussion of above sketched physical

processes are presented in [13], p. 68, including certain identification and optimization

considerations.

Finally Figure 3 shows the total consumption of energy, corresponding to Fig-

ure 2. Its seemingly regularized increase, with nearly invisible day quasi-cycles,

reflects the accumulation ability of applied building materials and structures, as well

as the reasonable control of artificial heating. The similar figure corresponding to

Figure 1 degenerates just to a linearly increasing function (because of winter climatic

conditions together with the low heating power).

8. Conclusion

We have demonstrated how the Fourier analysis can contribute to the devel-

opment of computational algorithms of thermal transfer and related phenomena,

including the simplified system analysis of thermal performance of buildings, namely

the simulation of energy consumption of building structures, respecting the signif-

icant effect of solar radiation and the proper control of heating equipments. The
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corresponding software in MATLAB is still in development; some more references to

preliminary results can be found in [12]. The application of this software to various

classes of real buildings and the development of further optimization tools belong to

the research priorities for the near future.

The robust and inexpensive numerical solver in MATLAB, working with linear

algebra, vector operations and spectral decompositions, as sketched under (13), seems

to be promising solution for the support of optimization of buildings, both residential

and industrial ones, as for the cooling and freezing plants, for the advanced buildings

with green roofs and walls (for their practical realization in Vienna see [7]), etc.

For example, the evaluation of temperature development and the heating power

requirements for the low-energy house in Ostrov u Macochy (35 km northern from

Brno, some heuristic corrections of climatic data from Brno are needed), with 4 rooms

and 26 planar interfaces with the carefully described inner structure, shows the good

coincidence between the simulation results and the recorded energy consumption

(time series compound from 5 years); for much more details see [13], p. 94. The time

step can be still h = 1 hour, whereas the requirement of stability of the explicit Euler

method (in the linearized case) would force h < 161, 63 s.

The formal derivation of all convergence properties of implemented algorithms,

regardless from their validation from engineering practice, is not trivial, just in the

case of iterations caused by strong nonlinearities and optimization steps; the proper

analysis are assumed to be prepared for (at least one) another, more extensive paper.

The same is true for optimization problems, namely for the application of the Nelder -

Mead method, using selected functions of the optimization toolbox from MATLAB,

to the support of design of building objects by [13], p. 89, working with the above

mentioned reference object again.
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Abstract: In this paper the fluid-structure interaction problem is studied on
a simplified model of the human vocal fold. The problem is mathematically
described and the arbitrary Lagrangian-Eulerian method is applied in order to
treat the time dependent computational domain. The viscous incompressible
fluid flow and linear elasticity models are considered. The fluid flow and the
motion of elastic body is approximated with the aid of finite element method.
An attention is paid to the applied stabilization technique. The whole algo-
rithm is implemented in an in-house developed solver. Numerical results are
presented and the influence of different inlet boundary conditions is discussed.

Keywords: stabilized finite element method, 2D Navier-Stokes equations,
vocal folds, aeroelasticity
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1. Introduction

The flow induced vibration of elastic structure or more generally fluid-structure
interaction problems (FSI) are important in many technical applications, see e.g. [3].
This contribution focuses on the simulation of human vocal folds vibration, see e.g. [5].
There are many numerical methods concerned with the solution of the fluid-structure
interaction and also many approaches how to deal with the coupled problem. Basi-
cally these can be characterized as either the monolithic or partitioned scheme, see
for example [7]. Monolithic solvers are usually more robust, but more computer time
consuming. The partitioned scheme decouples the solution of both subproblems, but
on the other hand it often requires subiterations.

This paper focuses on the application of the partitioned scheme for finite ele-
ment method (FEM). To avoid possible instabilities of FEM due to high Reynolds
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number flows the streamline upwind/Petrov-Galerkin (SUPG) method, pressure-
stabilization/Petrov-Galerkin (PSPG) method together with ‘div-div’ stabilization
are applied.

The structure of the paper is as follows. First the mathematical model consisting
of the Navier-Stokes and linear elasticity equations is presented and the arbitrary
Lagrangian-Eulerian method (ALE) is used. Further the flow problem is discretized
in space by the stabilized finite element method. The numerical results of several
test cases are shown.

2. Mathematical model

For the sake of simplicity the FSI problem is solved in 2D. The geometry of the
problem topology is shown in Figure 1. The elastic structure (the vocal fold) is
represented by the domain Ωs. It is not necessary to distinguish between the shape
at an arbitrary time t and the reference shape of the domain because of the adopted
Lagrange approach for the deformation description.

The domain Ωf
ref denotes the reference fluid domain, e.g. the domain at the

time instant t = 0 with the common interface ΓWref
= ΓW0 between the fluid and

structure domains. The fluid motion is solved with the ALE method, which enables
the change of the reference domain Ωf

ref to the domain Ωf
t at any time instant t.

Figure 1: Geometry of vocal folds model with boundaries marked before (left) and
after (right) deformation.

Elastic body. The deformation of the elastic body Ωs
ref depends on establishing of

dynamic equilibrium between the inertia forces and the applied surface and volume
forces. This equilibrium is described by the partial differential equation, see e.g. [2]

ρs
∂2ui
∂t2
−
∂τ sij
∂xj

= f s
i in Ωs × (0,T), (1)

where u(X, t) = (u1, u2) denotes the displacement vector, f s
i is the component of

volume force, ρs is the structure density and τij are the components of the Cauchy
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stress tensor. These components are expressed by the generalized Hooke’s law. As-
suming the isotropic material and small displacements the components of the stress
tensor τ s = (τ sij) are given by

τ sij = λs(div u) δij + 2µsesij(u), (2)

where δij is Kronecker’s delta, esjk(u) = 1
2

(
∂uj

∂xk
+ ∂uk

∂xj

)
is the strain tensor, and

λs, µs are Lame’s constants related to the Young modulus of elasticity and Poisson’s
ratio. The partial differential equation (1) is enclosed with the following initial and
boundary conditions

a) u(X, 0) = u0(X), for X ∈ Ωs,

b)
∂u

∂t
(X, 0) = u1(X) for X ∈ Ωs, (3)

c) u(X, t) = uDir(X, t) for X ∈ Γs
Dir, t ∈ (0,T),

d) τ sij(X, t)n
s
j(X) = qsi (X, t), for X ∈ Γs

Wref
, t ∈ (0,T),

where the ΓWref
,Γs

Dir are mutually disjoint parts of the boundary ∂Ω = ΓWref
∪ Γs

Dir

(see Figure 1) and ns
j(X) are components of the unit outer normal to ΓWref

.

ALE method. The ALE method uses a diffeomorphism At of the reference (un-
deformed) domain Ωf

ref onto the time-dependent domain Ωf
t at any time instant

t ∈ (0,T). This mapping At is also required to satisfy

∂At

∂t
∈ C(Ωf

ref ), At(∂Ωf
ref ) = ∂Ωf

t , t ∈ (0,T). (4)

The ALE domain velocity is then defined by

wD(x, t) =
∂

∂t
At(X), t ∈ (0,T), x = At(X) ∈ Ωf

t . (5)

Afterwards ALE derivative is introduced as the time derivative with respect to a fixed
point X ∈ Ωf

ref . The ALE derivative satisfies

DA

Dt
f(x, t) =

df(At(X), t)

dt
=
∂f

∂t
(x, t) + wD(x, t) · ∇f(x, t). (6)

For more details see the article [9]. The practical construction of ALE mapping is
described in [5] or [10].

Fluid motion. The fluid is assumed to be viscous and incompressible in the time
dependent domain Ωf

t . Its motion is modelled by the Navier-Stokes equations in the
ALE form

DAv

Dt
+ ((v −wD) · ∇)v − νf∆v +∇p = 0, div v = 0 in Ωf

t , (7)
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where v(x, t) denotes the fluid velocity, p is the kinematic pressure and νf is the
kinematic fluid viscosity, see [5].

The problem (7) is equipped with an initial and the following boundary conditions

a) v(x, t) = wD(x, t) for x ∈ Γf
Dir ∪ ΓWt , t ∈ (0,T),

b) v(x, t) = vDir(x, t) for x ∈ Γf
In, t ∈ (0,T), (8)

c) p(x, t)nf − νf ∂v

∂nf
(x, t) = −1

2
v(v · nf )− for x ∈ Γf

Out, t ∈ (0,T),

where nf is unit outer normal to boundary ∂Ωf
t . The last condition (8 c) is the

modified do-nothing boundary condition according to [1], which suppresses possible
backward inlet through the outlet boundary.

Coupling. The solutions of problems (1) and (7) depend on each other via the
boundary conditions on the common interface. Moreover, the location of the inter-
face ΓWt at time t is not a priori known and is dependent on the establishing force
equilibrium between the aerodynamic and the elastic forces. It is implicitly given by
the deformation u as

ΓWt =
{
x ∈ R2|x = X + u(X, t), X ∈ ΓWref

}
. (9)

First the so called dynamic boundary condition expressing effect of aerodynamic
force qs = (qs1, q

s
2) is prescribed at the interface for the structure, where

qsi (X, t) = −
2∑

j=1

ρf (−pδij + νf (
∂vi

∂xj
+
∂vj

∂xi
))nf

j

∣∣∣∣
x=X+u(X,t)

. (10)

Further, the coupling of the problem is characterized by the so called kinematic
boundary condition (8a), where the domain velocity wD is equal to the structure
velocity at the interface ΓWt . In order to solve the problem, the strong coupling
algorithm is implemented, see e.g. [5].

3. Discretization

Both parts of the FSI problem were discretized in space by the finite element
method. For the time discretization the equidistant time step ∆t = T

N
, N >> 1

was used. The partition of the time interval is then given by tn = n∆t. The
functions u,v, p are approximated at time instant tn by un,vn, pn.

Elastic body. First, equation (1) is reformulated in a weak sense, the generalized
Hooke’s law (2) and the Green theorem is applied, which leads to(

ρs
∂2uj
∂t2

, ϕj

)
Ωs

+
(
λs(div u) δij + 2µsesij(u), esij(ϕ)

)
Ωs=

(
f s
j , ϕj

)
Ωs+

(
qsj , ϕj

)
Γs
Neu

. (11)
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This equation needs to be satisfied for all ϕ = (ϕ1, ϕ2) ∈ V × V ,
where V = {φ ∈ H1(Ωs)|φ = 0 on Γs

Dir} and H1(Ω) is the Sobolev’s space. The no-
tation (·, ·)M denotes scalar product in the space L2(M). The numerical solution uh

is now sought in the finite dimensional FE space, i.e. it can be expressed as the lin-
ear combination of basis functions uh(x, t) =

∑Nh

i=1 αi(t)ϕi(x), where the coefficients
α(t) = (αi(t)) are unknowns. Then fulfilment of equation (11) leads to the system
of ordinary differential equations of the second order

Mα̈(t) + Cα̇(t) + Kα(t) = b(t), (12)

where the matrix C was added as a model of the proportional structural damping,
see e.g. [5]. The vector b(t) has components bj(t) =

(
f s,ϕj

)
Ωs +

(
qs,ϕj

)
Γs
Neu

and

the elements of matrices M = (mij),K = (kij) are given by

mij =

(
ρs
∂2ϕi

∂t2
,ϕj

)
Ωs

, kij =
(
λs(div ϕi) δrl + 2µsesrl(ϕi), e

s
rl(ϕj)

)
Ωs . (13)

The proportional damping matrix is chosen as C = ε1M + ε2K with appropriate
choice of parameters ε1, ε2. This system is numerically approximated by the Newmark
method, see e.g. [5].

Fluid motion. Equation (7) is first discretized in time by the backward differ-
entiation formula of the second order (BDF2), see [10]. Furthermore, the non-
linear convective term is linearized using the value from the previous time step,
(v · ∇)v|tn+1

≈ (vn · ∇)vn+1. Afterwards the weak formulation is derived in the

standard way, where on the outflow part of the boundary Γf
Out one extra application

of Green theorem to the convective term according to [1] is performed. The func-
tional spaces X = X ×X, X = H1(Ωf ) and M = L2(Ωf ) are introduced. Then the
solution of problem V = (v, p) = (vn+1, pn+1) is sought in the space X ×M such
that v fulfills conditions (8 a) b) ) and moreover

a(V,Φ) = f(Φ) for all Φ = (ϕ, q) ∈W × L2(Ωf ), (14)

where W = W×W , W = {φ ∈ X|φ = 0 on Γf
Dir∪Γf

In∪Γf
Wt
}. The bilinear form a(·, ·)

and functional f(·) are defined as

a(V,Φ) =

(
3v

2∆t
,ϕ

)
Ωf

+
1

2
((vn − 2wD) · ∇)v,ϕ)Ωf − 1

2
((vn · ∇)ϕ,v)Ωf +

+
1

2

(
(vn · nf )+v,ϕ

)
Γf
Out

+ νf (∇v,∇ϕ)Ωf − (p, div ϕ)Ωf + (q, divv)Ωf , (15)

f(Φ) =

(
4vn − vn−1

2∆t
,ϕ

)
Ωf

,

where for a given time step tn+1 we set vi(x) = vi(Ati(A
−1
tn+1

(x))).
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Stabilization of FEM. The instability arises primarily from unresolved high ve-
locity gradients regions, which can be characterized by high values of local Reynold
number ReK . In order to overcome this phenomenon the streamline-upwind/Petrov-
Galerkin method (SUPG) and pressure-stabilization method (PSPG) together with
‘div-div stabilization’ were applied, see [6]. The fully stabilized scheme is intro-
duced with the additional terms added to equation (14) with shortened notation
ζ := ((vn −wD) · ∇)ϕ+∇q

L(V,Φ) =
∑
K∈Th

δK

(
3v

2∆t
+ ((vn −wD) · ∇)v +∇p− ν∆v, ζ

)
K

, (16)

F(Φ) =
∑
K∈Th

δK

(
4vn − vn−1

2∆t
, ζ

)
K

, P(V,Φ) =
∑
K∈Th

τK (∇ · v,∇ ·ϕ)K ,

where parameters δK and τK are locally defined using local element length hK as

δK =
h2
K

τK
, τK = ν

(
1 +ReK +

h2
K

ν∆t

)
, ReK =

hK ||vn −wD||K
2ν

. (17)

The stabilized problem now reads: find V = (v, p) ∈ X × M such that v fulfills
conditions (8a)b)) and

a(V,Φ) + L(V,Φ) + P(V,Φ) = f(Φ) + F(Φ), (18)

for all Φ = (ϕ, q) ∈W × L2(Ωf ). The numerical simulations were done using LBB
stable P1-bubble/P1 elements. The solution of system (18) was performed by the
mathematical library UMFPACK, see [4].

4. Numerical simulations

Numerical tests were performed on computational domain with vocal fold
model M5 described in [8]. The height of the vocal fold was set to 6 mm.

Flow solver. First, the fluid flow through the fixed computational domain without
interaction was computed. The inlet velocity was set to fully developed flow with
maximum 1 m/s. The viscosity was set to νf = 1.47 · 10−5 m/s2 and the time step
∆t = 10−4 s was chosen. Figure 2 shows a distribution of the flow velocity magnitude
and pressure and illustrates the typical jet and vortex structures. Figure 3 shows
the pressure difference between the inlet and the outlet computed both with (p stab)
and without stabilization (p unstab). For this computation it was possible to use
also the unstabilized FEM, the results are very similar.

FSI test. Subsequently, the coupled fluid-structure interaction problem in the
same domain was solved. The vocal fold consists of two layers: The thin layer around
the interface represents epithelium with Young modulus of elasticity and Poisson’s
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Figure 2: Flow field velocity together with pressure isolines are shown at the time
instant t = 0.3105 s for the case of the unstabilized FEM computation.

Figure 3: Pressure difference between the mean value on the inlet and the outlet.

ratio Es = 100 kPa and σ = 0.4, respectively. The rest of the vocal fold (muscle) is
modelled with Es = 12 kPa, σ = 0.4. The densities were set as ρs = 1000 kg/m3,
ρf = 1.185 kg/m3 and damping parameters as ε1 = 5.0 s−1, ε2 = 2.0 · 10−5 s. The
eigenfrequencies and the eigenmodes were determined by the modal analysis. The
first two are shown in Figure 4. They are the most important because the first mode
represents motion dominantly in x-direction, whereas the second in the y-direction.
The higher eigenfrequencies have a more complex shape of eigenmodes.

The same problem was solved either with the prescribed inlet velocity (parabolic
profile with maximum 3 m/s - BC velocity) or with the prescribed correspondent
pressure difference (272.55 Pa - BC pressure). The interaction between elastic body
and fluid flow was enabled after 0.1 s of computation, when the flow field was already
fully developed. The numerically simulated displacements of one chosen node at the
top of the bottom vocal fold are plotted in Figures 5 and 6 on the left and the Fourier
transforms of the time signal are shown on the right.

After a transient part of the simulation, that corresponds to a sudden loading
of the vocal folds by aerodynamic forces at the start of the interaction, the vocal
folds vibrate with similar amplitudes in both cases around a new equilibrium point.
The Fourier transform indicates the excitation of the first two eigenmodes. The first
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Figure 4: First and second eigenmode of vocal fold vibration with the correspondent
eigenfrequencies.

Figure 5: Simulated displacements of the point from the top of vocal fold in
x-direction in time domain (left) and the normalized Fourier transformation of the
signals (right). Time signal is plotted from the start of computation with the inter-
action.

Figure 6: Simulated displacements of the point from the top of vocal fold in
y-direction in time domain (left) and the normalized Fourier transformation of the
signals (right). Time signal is plotted from the start of computation with the inter-
action.

eigenmode with the eigenfrequency of 108.7 Hz dominates in the spectrum for the
x-component of the displacement (see Fig. 5). The frequency of the first eigenmode
is also dominant for the y-component of the displacement but the second eigenmode
with eigenfrequency 220.9 Hz is also excited noticeably (see Fig. 6). In the case of
BC velocity the excitation of the second mode is higher in comparison with the case
of BC pressure. This behaviour can be caused by different pressure distribution
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Figure 7: Velocity profile along the inlet at time instants t = 0.1 + j ∗ ∆t [s],
j ∈ {1, 4, 9}. Units are m/s and x-axis denotes distance from bottom of channel.

Figure 8: Kinematic pressure p along the inlet at time instants t = 0.1 + j ∗∆t [s],
j ∈ {1, 4, 9}. Units on the y-axis are in Pa ·m3/kg and the x-axis denotes the
distance from the bottom of the channel.

inside the fluid domain which is the dominant part of the aerodynamic force. If the
pressure difference is prescribed, then the real pressure drop between the inlet and
the outlet remains almost constant while inlet velocity slightly varies. On the other
hand if velocity profile is prescribed, then the inlet velocity is fixed and pressure along
the channel considerably varies. This is presented in Figures 7 and 8, where time
instants were chosen as: 1.0005 s – start of the vocal folds opening, 1.0020 s – point
of return from maximal displacement, 1.0045 s – channel closure at the end of the
vibration cycle.

5. Conclusion

The article presents the mathematical description and derivation of numerical
scheme for solution of FSI by FEM. Special attention is paid to the stabilization
of FEM by additional terms introduced in weak formulation of the problem. These
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SUPG, PSPG and ‘div-div’ stabilization methods enable to overcome numerical in-
stabilities and to obtain more accurate results. The simulation of flow-induced vi-
bration of vocal folds computed by an in-house developed program is shown and the
influence of the boundary conditions is studied.
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and Biomedical Applications, pp. 312–393. Birkhauser, 2014.

[6] Gelhard, T., Lube, G., Olshanskii, M. A., and Starcke, J. H.: Stabilized finite
element schemes with LBB-stable elements for incompressible flows. J. Comput.
Appl. Math. 177 (2005), 243–267.

[7] Richter, T.: Numerical methods for fluid-structure interaction problems. Ph.D.
thesis, University of Heidelberg, Germany, 2010.

[8] Scherer, R. C. et al.: Intraglottal pressure profiles for a symmetric and oblique
glottis with a divergence angle of 10 degrees. Journal of the Acoustical Society
of America 109 (2001), 1616–1630.

[9] Takashi, N. and Hughes, T. J. R.: An arbitrary Lagrangian-Eulerian finite ele-
ment method for interaction of fluid and a rigid body. Comput. Methods Appl.
Mech. Engrg. 95 (1992), 115–138.
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Abstract: PERMON (Parallel, Efficient, Robust, Modular, Object-oriented,
Numerical) is a newly emerging collection of software libraries, uniquely com-
bining Quadratic Programming (QP) algorithms and Domain Decomposition
Methods (DDM). Among the main applications are contact problems of me-
chanics. This paper gives an overview of PERMON and selected ingredients
improving scalability, demonstrated by numerical experiments.

Keywords: TFETI, quadratic programming, PERMON, PermonQP, Per-
monFLLOP, coarse problem

MSC: 65F05, 65M60, 65N55

1. Introduction

PERMON (Parallel, Efficient, Robust, Modular, Object-oriented, Numeri-

cal) [10], [12] is a newly emerging collection of software libraries, uniquely combining

quadratic programming (QP) and Domain Decomposition Methods (DDM). There

are two core modules in PERMON: PermonQP and PermonFLLOP. They are built

on top of PETSc [3], [2], mainly its linear algebra part. They extend PETSc with

new specific functionality, algorithms for large scale sparse QP problems and DDM

of the Finite Element Tearing and Interconnecting (FETI) type. The same coding

style is used so that users familiar with PETSc can utilize them with minimal effort.

Among the main applications are contact problems of mechanics.

PermonQP provides a base for solution of quadratic programming (QP) problems.

It includes data structures, transforms, algorithms, and supporting functions for QP.

PermonQP is available for free under the FreeBSD open source license.

PermonFLLOP (FETI Light Layer on Top of PETSc) is an extension of Per-

monQP that adds support for DDM of the FETI type. PermonFLLOP is currently

under preparation for publishing.

DOI: 10.21136/panm.2016.18
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2. PermonQP

PermonQP, a general purpose QP solver, allows solving QPs with a symmetric

positive semidefinite Hessian and any combination of linear equality and inequality

constraints including unconstrained QP. It provides a basic framework for QP so-

lution (data structures, transformations, and supporting functions), a wrapper of

PETSc KSP linear solvers for unconstrained and equality-constrained QP, a wrap-

per of PETSc TAO optimization solvers [13] offering several additional algorithms

for unconstrained and box-constrained QP, a variant of the augmented Lagrangian

method called Semi-Monotonic Augmented Lagrangian with Bound and Equality

(SMALBE), and several specific solvers for bound constrained minimization. General

linear inequality constraints can be converted to bound constraints using dualization.

3. PermonFLLOP

PermonFLLOP (FETI Light Layer on Top of PETSc) is an extension of the Per-

monQP package, implementing the algebraic part of DDMs of the FETI type [7], [6],

[5], [4]. Let us show how PermonFLLOP is implemented from the user’s perspective.

The domain has to be volume-meshed and decomposed using a partitioning software

such as METIS [1]. Then virtually arbitrary Finite Element Method (FEM) im-

plementation can be used to generate the subdomain stiffness matrices Ks and the

subdomain load vectors f s as sequential data for each subdomain Ωs, s = 1, . . . , NS

independently. However, the local-to-global mapping l2g, mapping each subdomain’s

degrees of freedom to the global degrees of freedom, has to be produced in this phase.

Let us denote the number of processor cores used for the compuation by Nc. We

assume here each processor core owns only one subdomain, NS = Nc. PermonFLLOP

has nevertheless a new experimental feature of allowing more than one subdomain

per core, NS > Nc, i.e. an array of Ks and f
s is passed per subdomain.

The “gluing” signed Boolean matrixBg is constructed based on l2g as described in

[14]. The FEM software can skip the processing of the Dirichlet conditions and rather

hand it over to PermonFLLOP, resulting in greater flexibility. PermonFLLOP allows

to enforce Dirichlet boundary conditions either by the constraint matrix Bd (Total

Finite Element Tearing and Interconnecting (TFETI) approach), or by a classical

technique of embedding them directly into K
s and f

s (FETI-1 approach). It is also

possible to mix these two approaches.

The inequality constraint matrix BI describes linearized non-penetration con-

ditions [5] on the contact zones. It is empty for linear (permanent contact only)

problems. The global constraint right-hand side vector c possesses an analogous

structure. Currently, PermonFLLOP requires BI and cI from the caller.

The subdomain nullspace matrix R
s is assembled using one of the following op-

tions. The first option is to use a numerical approach [8], and the second one is to

generate R
s as rigid body modes from the mesh nodal coordinates [4]. The latter is

typical for TFETI and is considered here.

155



Within PermonFLLOP, the local objects K
s, Rs and f

s constitute the global

distributed objects

K = diag(K1, . . . , KNS),

R = diag(R1, . . . , RNS),

f = [(f1)T , . . . , (fNS)T ]T ,

where diag means a block-diagonal matrix consisting of the diagonal blocks in the

parentheses.

In the PermonFLLOP’s function FllopSolve, PermonFLLOP passes the global

primal dataK, f , BE = [BT
g B

T
d ]

T
, BI andR to PermonQP (Section 2), calls a specific

series of QP transforms provided by PermonQP, resulting in the bound and equality

constrained QP which is then solved with the QPSSolve function.

From the mathematical point of view, the called QP transforms (QPT) implement

the following modifications. The original primal problem

min
1

2
u
T
Ku− f

T
u s.t. BIu ≤ 0 and BEu = 0, (1)

is transformed into the dual one by QPTDualize

min
1

2
λ

T
Fλ − λ

T
d s.t. λI ≥ 0 and Gλ = e, (2)

We use the standard notation

F = BK
†
B

T , G = R
T
B

T , d = BK
†
f , e = R

T
f ,

with matrix R, whose columns span the null space of K and represent rigid body

or zero energy modes of subdomains, and K
† denoting a generalized inverse of K,

i.e. a matrix satisfying KK
†
K = K. The constraint matrix B = [BT

I B
T
E ]

T
can be

constructed so that it has full rank, and then the Hessian F is positive definite with

a relatively favourably distributed spectrum for application of the conjugate gradient

method (CG).

The solution u can be evaluated by formula

u = K
†(f −B

T
λ) +Rα. (3)

Here,

α = −(RT
˜B

T
˜BR)−1

R
T
˜B

T
˜BK

†(f −B
T
λ)

denotes the vector of amplitudes, determining the contribution Rα of the null

space R to the solution u. The matrix ˜B is defined as ˜B = [ B̃T
I

B
T
E ]

T
with ˜BI

formed by rows of BI that correspond to the active constraints.

The problem of minimization on the subset of the affine space is transformed into

the problem on subset of vector space by means of arbitrary ˜λ which satisfies G˜λ = e
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while the solution is looked for in the form λ = ̂λ + ˜λ. The problem obtained by

QPTHomogenizeEq then reads

min
1

2
̂λ
T
F̂λ− ̂λ

T (d− F˜λ) s.t. ̂λI ≥ −˜λI and Ĝλ = 0. (4)

Further improvement is based on the observation, that the augmented Lagrangian

for problem (4) can be decomposed by orthogonal projectors

Q = G
T (GG

T )−1
G and P = I−Q

on the kernel of G and on the image space of GT : ImP = KerG, ImQ = ImG
T .

Evaluating (GG
T )−1, i.e. solving the linear system

GG
T
x = y, (5)

is called the coarse problem (CP). The modified formulation of the problem (4),

obtained by QPTEnforceEqByProjector, then takes the form

min
1

2
̂λ
T
PFP̂λ− ̂λ

T
Pd s.t. ̂λI ≥ −˜λI and Ĝλ = 0. (6)

More details can be found in [12].

4. Coarse problem

FETI methods blend iterative and direct solvers. The main loop solving the dual

problem is implemented by an iterative solver, e.g. CG. In each iteration, auxiliary

problems related to the application of an unassembled system operator are solved:

(1) K† application and (2) CP solution.

Parallelization is achieved mainly by distributing diagonal blocks of K over pro-

cessors, each block reflecting a subdomain. We strive to maximize the number of

subdomains to reduce the sizes of the subdomain stiffness matrices, accelerating their

factorization and K
† actions. Furthermore, thanks to the FETI operator condition

number estimate [6], decomposition into more subdomains maintaining a fixed dis-

cretization parameter h leads to reduction of the condition number of K and thus

the number of iterations.

A drawback is the increasing null space dimension which decelerates the CP so-

lution – it is a kind of a communicating vessels effect. The natural coarse space

matrix G is computed so that each core owns the sparse sequential matrices R
s

and B
s, and computes the local horizontal block G

s = (Rs)T (Bs)T without any

communication, G = [(G1)T , . . . , (GNS)T ]T . The multiplication GG
T = G ∗ G

T ,

factorization of GG
T , and the CP solutions (5) should be done in parallel, other-

wise they form a computational and memory bottleneck. The sparsity pattern of G

and GG
T for the cube decomposed into 27 subdomains is illustrated in Fig. 1 and

Fig. 2, respectively.
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Figure 1: The sparsity pattern of G for a problem of the elastic cube with 27 sub-

domains an 23 elements per subdomain.

Figure 2: The sparsity pattern of GG
T for the same problem as in Fig. 1.

We have suggested and compared several strategies for parallel CP solu-

tion [11], [9]. The explicit orthonormalization approach starts to fail when the

nullspace is large (thousands). Hence, we have abandoned this approach. Let us

describe in more detail the strategies tested in this work.

Strategy 1 (S1) Obtain a solution of CP by solving the system (5) iteratively

(by CG or pipelined CG (PipeCG)) or by a direct method (by parallel direct

solver (SuperLU DIST)). For a direct solution, GG
T is factorized in the pre-

processing phase: GG
T = L

GG
T

(LGG
T

)T . During the solution phase, each

application of (GG
T )−1 consists of the forward and backward substitution us-

ing a parallel direct solver: x = (GG
T )−1

y is solved by a two-step procedure

as (1) LGG
T

w = y, (2) (LGG
T

)Tx = w.

Strategy 2 (S2) An iterative or a parallel direct solver is employed for the com-

putation of the explicit inverse of GG
T . During the preprocessing phase,

(GG
T )−1 is computed iteratively or by a direct method. In the solution phase,

its application consists in the parallel dense matrix-vector product (GG
T )−1

y

in both cases.

The CP dimension is not large enough to justify the use of the whole global com-

municator. Instead, we propose a proper partial parallelization of this CP solution.

We divide all processes of the global PETSC COMM WORLD communicator into the

subcommunicators using PETSc built-in “pseudopreconditioner” PCREDUNDANT;
the number of these subcommunicators is Nr (number of cores doing redundant

work); this means the number of cores in each subcommunicator is ≈ Nc/Nr.

In Strategy 2, the explicit inverse is assembled in the following way. Each of Nr

subcommunicators is assigned a contiguous portion of Nn/Nr columns of the identity

matrix taken as the right-hand side, where Nn is the dimension of the nullspace of K,

i.e. the number of columns of the matrix R. The result of the forward/backward

substitutions is the corresponding portion of Nn/Nr columns of the resulting explicit

inverse (GG
T )−1, stored as a Nn×(Nn/Nr) dense matrix distributed vertically across

the subcommunicator. Taking advantage of the symmetry of (GG
T )−1, each sub-

communicator’s block is transposed in parallel and the blocks are then merged one

158



su
b
co
m
m

1
su
b
co
m
m

2
su
b
co
m
m

3

W
O
R
LD

co
m
m

logical

merge

transpose

I

Figure 3: Scheme of (GG
T )−1 implementation using Strategy 2. Different colours

represent different communicators.

below the other in the proper order forming the complete (GG
T )−1 matrix, divided

into horizontal blocks distributed across the global communicator. Note that this

merge means only logical reassignment from the subcommunicator to the global com-

municator with no actual data movements. A scheme of this strategy is depicted in

Fig. 3.

5. Numerical experiments

The numerical experiments were performed at ARCHER, the latest UK National

Supercomputing Service. It is based on a Cray XC30 supercomputer with 4920 nodes,

118,080 cores and 1.56 Petaflops of theoretical peak performance. All compute nodes

are connected together in the Dragonfly topology by the Aries interconnect. Each

compute node contains two 2.7 GHz, 12-core Ivy Bridge processors.

Firstly, we have performed a comparison of the CP strategies. For the CP so-

lution the SuperLU DIST solver performs better than the MUMPS solver. The

GGtinv phase of the S1 is much cheaper in comparison with S2. On the other hand,

S1 has much more expensive CP actions compared with S2. For a high number of

expected CP actions, the second strategy starts to payoff because the high cost of

preprocessing phase is offset by the cheapness of the CP action. The choice of an

appropriate strategy therefore depends on the number of expected CP actions. This

can be interesting for ill conditioned elasto-static problems but even more interest-

ing for contact problems where the number of iterations is always higher. Finally,

the greatest effect will be seen for all problems that are solved using outer iteration

on top of FETI such as shape optimization, transient problems, or elasto-plasticity.

Graphs in Fig. 4 show performance of both strategies on 8,000 subdomains (the CP

size 48,000).
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Figure 4: CP performance for the cube benchmark with 8,000 subdomains. GG
T

size is 48,000. Top left: CP setup time. Top right: CP solution time. Bottom left:

Time of CP setup + 100 CP actions. Bottom right: Time of CP setup + 1000 CP

actions actions.

Secondly, we have demonstrated PERMON capabilities using weak scalability

tests with the S1 strategy. As a model 3D linear elasticity problem, we consider an

elastic cube with the bottom face fixed generated by our PermonCube benchmark

generation package. For the linear case (see Fig. 5), the top face is loaded with a

vertical surface force fz = 465 [N/mm2] directed upwards. For the nonlinear case

(see Fig. 7), the top face is loaded with a vertical surface force fz = −465 [N/mm2]

directed downwards, and the right one is partially in contact with a rigid obstacle. In

both cases, Young modulus is E = 2 · 105 [MPa], and Poisson ratio is µ = 0.33. The

graphs in Fig. 6 and Fig. 8 demonstrate both numerical and weak parallel scalability

up to 701 millions of unknowns and 10,648 subdomains with one subdomain per one

computational core. The contact problem was solved using SMALBE and Modified

Proportioning and Reduced Gradient Projection (MPRGP) with our new adaptive

expansion steplength which significantly improved this scalability and reduced not

only the number of expansion steps but also the number of CG steps.

6. Conclusion

The PERMON team was successful to push the scalability limits for both linear

and nonlinear benchmarks using ARCHER up to 702 millions of unknowns and

10,648 subdomains (cores). The implemented matrix formats and efficient parallel
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Figure 5: Linearly elastic cube problem.

Figure 6: Scalability results for the linearly elastic cube problem.

Figure 7: Contact problem – a linearly elastic cube with an obstacle.
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Figure 8: Scalability results for the contact problem.

direct solvers were employed. Furthermore, two strategies for CP solution were

studied: (1) factorization + forward/backward substitutions, (2) factorization +

explicit inverse assembly + dense matrix-vector products. It was demonstrated that

the optimal strategy depends on the number of subdomains and the expected number

of CP actions. The latter depends on the class of the solved problem.
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1Institute of Computer Science, Czech Academy of Sciences,
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Abstract: A block version of the BFGS variable metric update formula is
investigated. It satisfies the quasi-Newton conditions with all used differ-
ence vectors and gives the best improvement of convergence in some sense
for quadratic objective functions, but it does not guarantee that the direction
vectors are descent for general functions. To overcome this difficulty and uti-
lize the advantageous properties of the block BFGS update, a block version of
the limited-memory BNS method for large scale unconstrained optimization is
proposed. The algorithm is globally convergent for convex sufficiently smooth
functions and our numerical experiments indicate its efficiency.

Keywords: Unconstrained minimization, block variable metric methods, limi-
ted-memory methods, the BFGS update, global convergence, numerical results
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1. Introduction

In this contribution we propose a block version of the widely used BNS method,

see [3], for large scale unconstrained optimization

min f(x) : x ∈ RN ,

where it is assumed that the problem function f : RN → R is differentiable.

The BNS method belongs to the variable metric (VM) or quasi-Newton (QN)

line search iterative methods, see [9], [11]. They start with an initial point x0 ∈ RN

and generate iterations xk+1 ∈ RN by the process xk+1 = xk + sk, sk = tkdk, k ≥ 0,

where usually the direction vector dk ∈ RN is dk = −Hkgk, matrix Hk is symmetric

positive definite and a stepsize tk > 0 is chosen in such a way that

fk+1 − fk ≤ ε1tkg
T
k dk, gTk+1dk ≥ ε2g

T
k dk, k ≥ 0 (1)

(the Wolfe line search conditions, see [11]), where 0 < ε1 < 1/2, ε1 < ε2 < 1,

fk = f(xk), gk = ∇f(xk). Typically, H0 is a multiple of I and Hk+1 is obtained from

DOI: 10.21136/panm.2016.19
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Hk by a VM update to satisfy the QN condition (see [9]) Hk+1yk = sk, yk = gk+1−gk,

k ≥ 0.

Among VM methods, the BFGS method, see [9], [11], belongs to the most ef-

ficient. It preserves positive definite VM matrices and can be written in the form

H+ = (1/b)ssT +
(

I − (1/b)syT
)

H
(

I − (1/b)ysT
)

, b = sTy, (2)

b > 0 by (1). Note that for simplification we often omit index k and replace in-

dices k + 1, k − 1 by symbols +,−, respectively. The BNS and L-BFGS (see [5],

[6] – subroutine PLIS) methods represent its well-known limited-memory adaptations

(for large-scale optimization). In every iteration we repeatedly update an initial

approximation of the inverse Hessian matrix ζkI, ζk > 0, by the BFGS method,

using m couples of vectors (sk−m̃, yk−m̃), . . . , (sk, yk) successively (without forming

approximations of the inverse Hessian matrix explicitly), where m̃ = min(k, m̂− 1),

m = m̃ + 1 and m̂ > 1 is a given parameter. In the case of the BNS method,

matrix H+ can be expressed in the form, see [3],

H+ = SU−TDU−1ST + ζ
(

I − SU−TY T
)(

I − Y U−1ST
)

, (3)

where for k≥ 0 we denote Sk = [sk−m̃, . . . , sk], Yk = [yk−m̃, . . . , yk], (Uk)i,j=(ST
k Yk)i,j

for i ≤ j, (Uk)i,j = 0 otherwise (an upper triangular matrix), Dk = diag[bk−m̃, . . . , bk].

For STY nonsingular and any H ∈ RN×N , the BFGS update formula (2) can be

easily generalized to the following block version

H+ = S(STY )−1ST +
(

I − S(STY )−TY T
)

H̄
(

I − Y (STY )−1ST
)

, H̄ =
1

2
(H +HT ),

(4)

which satisfies the QN conditions H+Y = S (for the whole block of stored difference

vectors) and was derived in [12] and [4] for STY,H symmetric positive definite.

Formula (4) is not directly applicable to general functions, since it does not

guarantee that the corresponding direction vectors are descent. Thus we split ma-

trices S and Y in such a way that S = [S[1], . . . , S[n]], Y = [Y[1], . . . , Y[n]], with all

blocks ST
[i]Y[i] positive definite, i.e. matrices ST

[i]Y[i] + Y T
[i]S[i] symmetric positive defi-

nite, i = 1, . . . , n. Then we replace the BNS formula (3) by n successive updates of

an initial matrix ζI using a modification of the block BFGS update (4) with matri-

ces S[i], Y[i], i = 1, . . . , n, instead of S, Y . Obviously, for n = m we obtain the BNS

method.

In Section 2 we derive the block BFGS update, investigate its properties and

show some similarities to the VM methods, based on the corrected BFGS updates,

see the limited-memory BFGS method [13] – [16]. In Section 3 we focus on quadratic

functions and show optimality of the block BFGS method and a role of unit stepsizes.

In Section 4 we present the block BNS method and derive a convenient formula

similar to (3) to represent the resultant VM matrix. The simplified algorithm is

described in Section 5. Global convergence of the algorithm is established in Section 6
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and numerical results are reported in Section 7. We refer to report [17] for details

and proofs of assertions, here we briefly present only the main results.

We will denote the Frobenius matrix norm by ‖ · ‖F .

2. The block BFGS update

Using the following theorem, update (4) can be derived for general functions:

Theorem 1. Let WL,WR ∈ RN×N be nonsingular, matrix Y have a full rank, ma-

trix H+ be given by (4) and matrices Ai+1, i = −1, 0, . . . , be the unique solution

to

min
Ai+1∈R

N×N

∥

∥W−1
L (Ai+1 − Āi)W

−1
R

∥

∥

F
s. t. Ai+1Y = S, Ā−1 = H, Āi =

1

2
(Ai + AT

i ),

i ≥ 0. Then for W T
RWRY = STS, TS square nonsingular, we have limi→∞Ai = H+.

The new update has similar interesting properties as the standard BFGS update.

Theorem 2. Let matrix H+ be given by (4), matrices STY, H̄,H+, S
T B̄S, T ∈ Rm×m

nonsingular, B̄ = H̄−1, B+ = H−1
+ . Then (also for nonsymmetric H̄)

(a) matrix H+ is invariant under the transformation S → ST , Y → Y T ,

(b) B+ = B̄ − B̄S(ST B̄S)−1ST B̄ + Y (STY )−TY T ,

(c) detB+ = det B̄ . det(STY )/ det(ST B̄S),

(d) for H and STY positive definite, also matrix H+ is positive definite,

(e) forS
∆
=[Š, s],Y

∆
=[Y̌ , y],STY, ŠT Y̌ symmetric nonsingular, P̌ =I−Y̌ (ŠT Y̌ )−1ŠT,

s̃ = P̌ T s and ỹ = P̌ y we have s̃T ỹ
∆
= b̃ 6= 0, H+ = (1/b̃) s̃s̃T + P̃ T ȞP̃ ,

P̃ = I−(1/b̃)ỹs̃T , Ȟ = Š(ŠT Y̌ )−1ŠT + P̌ T H̄P̌ ; besides, ŠTB+s̃ = ŠT Ȟ−1s̃ = 0

holds.

Theorem 2(e) shows some connections with our methods [13] – [16] based on vec-

tor corrections for conjugacy. The following theorem indicates that we can expect

good properties of the block BFGS update also for functions similar to quadratic.

Theorem 3. Let matrices Š, Y̌ , P̌ , Ȟ, H+ and vectors s̃, ỹ have the same meaning

as in Theorem2(e), STY be symmetric positive definite, s̈ = s + Šσ, ÿ = y + Y̌ σ,

σ ∈ Rm̃, m̃ ≥ 1. Then b̈ = s̈T ÿ ≥ s̃T ỹ > 0. Moreover, if matrix H̄ is nonsingular,

P̈ = I−(1/b̈)ÿ s̈T , Ḧ+ = (1/b̈)s̈ s̈T + P̈ T ȞP̈ and Ĝ is any symmetric positive definite

matrix satisfying ĜS = Y , then function ϕ(σ) = ‖Ĝ
1
2 Ḧ+Ĝ

1
2 − I‖F is minimized and

Ḧ+ = H+ holds for σ = −(ŠT Y̌ )−1Y̌ T s, when s̈ = s̃, ÿ = ỹ.
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Paradoxically, the standard BFGS update often gives better results if STY is

almost symmetric and the Hessian matrix is ill-conditioned. Therefore we will use,

in addition to the choice s̈ = s̃, ÿ = ỹ, also the choice s̈ = s, ÿ = y, which corresponds

to the standard BFGS update of Ȟ and can be easily realized by means of blocks of

order one, or a special choice s̈ = s− (sTy−/b−)s−, ÿ = y− (yTs−/b−)y−, which can

be more robust than the block BFGS update, see [17] for details.

3. Results for quadratic functions

Compared to the BNS method, the block BFGS update gives the best improve-

ment of convergence in some sense for linearly independent direction vectors:

Theorem 4. Let f(x) = 1
2
(x − x̄)TG(x − x̄), x̄ ∈ RN , with a symmetric posi-

tive definite matrix G, let all columns of S be linearly independent, k = k − m̃,

Ŝi = [sk, . . . , si], Ŷi = [yk, . . . , yi], P̂i = I− Ŷi(Ŝ
T
i Ŷi)

−1ŜT
i , i = k, . . . , k, s̈k = s̃k = sk,

ÿk = ỹk = yk, s̈i = si + Ŝi−1σi, ÿi = yi + Ŷi−1σi, σi ∈ Ri−1, s̃i = P̂ T
i−1si,

ỹi = P̂i−1yi, i = k + 1, . . . , k. Then matrices ŜT
i Ŷi are symmetric positive definite

and s̈Ti ÿi ≥ s̃Ti ỹi > 0, i = k, . . . , k.

Moreover, let H̄ be symmetric positive definite, H+ be given by (4) and Ḧk+1 by

Ḧk = H̄, Ḧi+1 = (1/s̈Ti ÿi) s̈is̈
T
i + P̈ T

i ḦiP̈i, P̈i = I − (1/s̈Ti ÿi) ÿis̈
T
i ,

i = k, . . . , k. Then value ‖G1/2Ḧ+G
1/2− I‖F is minimized and matrices Ḧ+ and H+

are identical and symmetric positive definite for s̈i = s̃i, ÿi = ỹi, i = k + 1, . . . , k.

Furthermore, similarly to Theorem 3.3 in [16], we get (see Theorem3.2 in [17])

that if one stepsize t is unit in two successive iterations with matrices H, H+ obtained

by the block BFGS updates, all stored direction vectors from previous iterations are

conjugate with vector s+; thus if all steps are unit, all matrices STY are tridiagonal.

4. The block BNS method

Using Lemma 1, we split matrices S, Y in such a way that S = [S[1], . . . , S[n]],

Y = [Y[1], . . . , Y[n]], n ≥ 1, with all blocks ST
[i]Y[i] positive definite (ST

[i]Y[i] + Y T
[i]S[i]

symmetric positive definite), i = 1, . . . , n, and use the theory in Section 2 for ma-

trices S[i], Y[i] instead of S, Y . We use the RL factorization instead of the LU one,

since we start with the submatrices of S, Y which contain their latest columns to

have maximum of the latest QN conditions satisfied. The following lemma converts

the problem of factorization to the same problem of a smaller dimension. A gener-

alization of the standard BNS formula (3) is given by Theorem 5.

Lemma 1. Suppose that A,R, L ∈ Rµ×µ, µ > 0, u, v ∈ Rµ, α ∈ R, α 6= 0,

Ā =

[

A u

vT α

]

, R̄ =

[

R u

α

]

, L̄ =

[

L

(1/α) vT 1

]

.

Then to have Ā = R̄L̄, it suffices to find R,L satisfying A − (1/α)uvT = RL.

Moreover,
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(a) if u = v then matrix Ā is symmetric positive definite if and only if both α > 0

and matrix A− (1/α)uvT is symmetric positive definite,

(b) if matrix Ā is positive definite, then α > 0 and A−(1/α)uvT is positive definite.

Theorem 5. Let ζ > 0,H[1] = ζI,S = [S[1], . . . , S[n]], Y = [Y[1], . . . , Y[n]], S
T
[i]Y[i] non-

singular, P[i] = I − Y[i](S
T
[i]Y[i])

−1ST
[i], H[i+1] = S[i](S

T
[i]Y[i])

−1ST
[i] +

1
2
P T
[i](H[i] +HT

[i])P[i],

Σi = Y T
[i]S[i], 1 ≤ i ≤ n, H+ = H[n+1]. Then ( Ũ is an upper block triangular matrix)

H+ = SŨ−TEŨ−1ST + ζ
(

I − SŨ−TY T
)(

I − Y Ũ−1ST
)

, (5)

E = diag
[

(1/2)(Σ1 + ΣT
1 ), . . . , (1/2)(Σn−1 + ΣT

n−1),Σn

]

, (6)

Ũ =









ST
[1]Y[1] . . . ST

[1]Y[n−1] ST
[1]Y[n]

. . .
...

...
ST
[n−1]Y[n−1] ST

[n−1]Y[n]

ST
[n]Y[n]









. (7)

Although matrix H+ is unsymmetric generally, we use the usual direction vector

d+ = −H+g+, such that z∗ = x+ + d+ satisfies g(z∗) = 0, g(z) = g+ +H−1
+ (z − x+)

(a linear model for gradients which respects the QN conditions); for ill-conditioned

problems we usually obtained better results than e.g. with vector d̄+ = −(1/2)(H++

HT
+)g+.

5. Implementation

Although we need not the symmetry of H+ to establish global convergence, for

better efficiency we also want to have all submatrices ST
[i]Y[i] sufficiently near to

symmetric. Since the block BFGS update can deteriorate stability, we sometimes do

not use this update for the last block ST
[n]Y[n], see Section 2 and [17] for details.

Algorithm 5.1 (simplified)

Data: A maximum number m̂ > 1 of columns of matrices S, Y , line search param-

eters and a global convergence parameter εD ∈ (0, 1).

Step 0: Initiation. Choose starting point x0 ∈ RN , define starting matrix H0 = I

and direction vector d0 = −g0 and initiate iteration counter k to zero.

Step 1: Line search. Compute xk+1 = xk + tkdk, where tk satisfies (1), gk+1 =

∇f(xk+1), sk = tkdk, yk = gk+1 − gk, bk = sTk yk, ζk = bk/y
T
k yk. If k = 0 set

Sk = [sk], Yk = [yk], S
T
k Yk = [bk], Y

T
k Yk = [ yTk yk], compute ST

k gk+1, Y
T
k gk+1

and go to Step 4.

Step 2: Matrix updates. Compute Y̌ T
k sk = −tkY̌

T
k Hkgk and form basic matri-

ces Sk := [Šk, sk], Yk := [Y̌k, yk], ST
k Yk :=

[

ŠT
k Y̌k ŠT

k yk
sTk Y̌k sTk yk

]

, Y T
k Yk :=

[

Y̌ T
k Y̌k Y̌ T

k yk
yTk Y̌k yTk yk

]

.
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Step 3: Block factorization. Create and factorize positive definite blocks ST
[i]Y[i] =

R[i]L[i] and ST
[i]Y[i] + Y T

[i]S[i] = R̄[i]L̄[i] with unit diagonal entries of L[i], L̄[i]

and with diagonal entries of R̄[i] greater than εD TrST
[i]Y[i], i = n, . . . , 1,

where number n ≥ 1 is determined during this process.

Step 4: Direction vector. Compute dk+1 = −Hk+1gk+1 by the block BNS method

and an auxiliary vector YkHk+1gk+1. Set k := k+1. If k ≥ m̂ delete the first

column of Sk−1, Yk−1 and the first row and column of ST
k−1Yk−1, Y

T
k−1Yk−1 to

form matrices Šk, Y̌k, Š
T
k Y̌k, Y̌

T
k Y̌k. Go to Step 1.

6. Global convergence

Assumption 1. The objective function f : RN → R is bounded from below and

uniformly convex with bounded second-order derivatives (i.e. 0 < G ≤ λ(G(x)) ≤
λ(G(x)) ≤ G < ∞, x ∈ RN , where λ(G(x)) and λ(G(x)) are the lowest and the

greatest eigenvalues of the Hessian matrix G(x)).

Theorem 6. If the objective function f satisfies Assumption 1, Algorithm5.1 gen-

erates a sequence {gk} that satisfies lim
k→∞

‖gk‖ = 0 or terminates with gk = 0 for

some k.

The proof of this theorem is based on Theorem2 and some inequalities for non-

symmetric positive definite matrices, see [17].

7. Numerical experiments

We compare our results with the results obtained by the L-BFGS method [5] and

the BNS method [3], all implemented in the system UFO [10], using the following

collections of test problems:

• Test 11 – 55 modified problems [8] from CUTE collection [2] with various di-

mensions N from 1000 to 5000 (prescribed for the given problem),

• Test 12 – 73 problems from the collection [1], N = 1000, 2000 and 5000,

• Test 25 – problems from the collection [7], 70 problems for N = 1000, 69 of

them for N = 2000 and N = 5000.

The source texts and the reports corresponding to these test collections can be

downloaded from the web page camo.ici.ro/neculai/ansoft.htm (Test 12) and from

www.cs.cas.cz/luksan/test.html (Tests 11 and 25).

Test 11 Test 12, N = Test 25, N =
Method

N ≤ 5000 1000 2000 5000 1000 2000 5000

L-BFGS 79575 26526 41348 76703 125838 189248 445820

BNS 76463 25575 42227 76667 121297 179829 436457

Alg. 5.1 59858 21583 32425 56299 100334 151035 310684

Alg 5.1 as % of BNS 78 84 77 73 83 84 71

Table 1. Comparison of the total number of function evaluation.
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Test 11 Test 12, N = Test 25, N =
Method

N ≤ 5000 1000 2000 5000 1000 2000 5000

L-BFGS 11.02 1.70 6.07 23.27 10.83 35.99 207.87

BNS 9.77 1.43 5.88 21.59 9.65 31.51 190.10

Alg. 5.1 7.46 1.23 4.80 16.16 7.88 26.74 135.47

Alg 5.1 as % of BNS 76 86 82 75 82 85 71

Table 2. Comparison of the total computational time in seconds.

We have used m̂ = 5, εD = 10−6 and the final precision ‖g(x⋆)‖∞ ≤ 10−6. In the

last row of Tables 1-2 we give the values for Algorithm5.1 expressed as percentages

of the corresponding values for the BNS method.

8. Conclusions

In this contribution, we derive a block version of the BFGS variable metric update

formula for general functions and show some its positive properties and similarities

to approaches based on vector corrections ([13] – [16]).

In spite of the fact that this formula does not guarantee that the corresponding

direction vectors are descent, we propose the block BNS method for large scale

unconstrained optimization, which utilizes the advantageous properties of the block

BFGS update and is globally convergent.

Numerical results indicate that the block approach can improve unconstrained

large-scale minimization results significantly compared with the frequently used

L-BFGS and the BNS methods.
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Václav Hapla, vaclav.hapla@vsb.cz
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Německo
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dagogická, Technická univerzita v Liberci

173
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Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola
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Petra Rozehnalová, rozehnalova.petra@gmail.com
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Andrea Živčáková, andrea.zivcakova@gmail.com
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